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Abstract

This paper proposes a new real-time stereo matching algorithm paired with an online
auto-rectification framework. The algorithm treats disparities of stereo images as hidden
states and conducts Viterbi process at 4 bi-directional paths to estimate them. Struc-
tural similarity, total variation constraint, and a specific hierarchical merging strategy
are combined with the Viterbi process to improve the robustness and accuracy. Based
on the results of Viterbi, a convex optimization equation is derived to estimate epipolar
line distortion. The estimated distortion information is used for the online compensation
of Viterbi process at an auto-rectification framework. Extensive experiments were con-
ducted to compare proposed algorithm with other practical state-of-the-art methods for
intelligent vehicle applications.

1 Introduction
3D scene understanding plays an essential role for intelligent vehicle applications [17]. In
these applications, passive stereo vision systems offer some significant advantages [35] to
estimate depth information compared with active systems such as 3D LIDAR. In the past
few years, much progress has been made towards solving the stereo matching problem
[5, 23, 27, 32, 37, 38] and leads to increasingly wide applications for intelligent vehicles
[14]. However, typical outdoor driving scenarios are still big challenges for stereo matching
algorithms [18, 21]. In the KITTI website [18], many state-of-the-art researches can be found
to overcome these challenges, such as PCBP-SS, StereoSLIC, and PCBP [36, 37], which are

c© 2014. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Geiger, Lauer, and Urtasun} 2011

Citation
Citation
{Woodfill, Gordon, and Buck} 2004

Citation
Citation
{Bleyer, Rhemann, and Rother} 2011

Citation
Citation
{Mei, Sun, Zhou, Jiao, and Wang} 2011

Citation
Citation
{Scharstein and Szeliski} 2002

Citation
Citation
{Tuytelaars and {Van Gool}} 2000

Citation
Citation
{Yamaguchi, Mcallester, and Urtasun} 2013

Citation
Citation
{Yang, Wang, Yang, Wang, Liao, and Nister} 2006

Citation
Citation
{Franke, Pfeiffer, Rabe, Knoeppel, Enzweiler, Stein, and Herrtwich} 2013

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Klette, Kruger, Vaudrey, Pauwels, van Hulle, Morales, Kandil, Haeusler, Pugeault, Rabe, and Lappe} 2011

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Yamaguchi, Hazan, Mcallester, and Urtasun} 2012

Citation
Citation
{Yamaguchi, Mcallester, and Urtasun} 2013



2 Q. LONG, Q. XIE, S. MITA, H. TEHRANI, K. ISHIMARU, C. GUO: MULTI-PATH VITERBI

based on Slanted-plane Markov Random Field model [4] and Superpixel segmentation [1];
wSGM [29], which is based on Semi Global Matching (SGM) [19] and Census transform
[39]; ATGV [25], which is based on Total Generalized Variation (TGV) [8] and Census data
term. It should be noticed that most top-ranked methods such as PCBP-SS, StereoSLIC,
PCBP, wSGM, rSGM, and iSGM et al. at KITTI are based on SGM or using SGM results as
initial value. In real-world applications, SGM-based algorithms are also the popular choices
[14]. Specific hardware for SGM such as CPUs [15], GPUs [10], and FPGAs [3] has been
implemented for these applications. Since currently SGM plays an important role in both
state-of-the-art researches and practical usage , we mainly compare our algorithm with SGM
in the experimental part.

To apply stereo vision in autonomous driving, we noticed that top-ranked algorithms as
well as SGM itself have some problems for practical usage: First, the real-time or nearly
real-time methods in the top 50 at KITTI only include ELAS [16], several varieties of SGM,
and several methods based on Block Matching or SGM. However, 200ms/frame is a minimal
requirement for autonomous driving and only a few methods can reach this requirement.
Second, the information of small objects such as small poles at roadside, fallen objects or
small animals on road area, thin fences, fire hydrants, and road curb et al. is crucial to
applications [31]. However, all the top-ranked methods at KITTI tend to over smooth the
disparity map and remove the small objects. Third, most stereo matching methods heavily
rely on the assumption that input images have a known epipolar geometry [19], especially
for the real-time ones. However, in real-world driving, this constraint may be slightly broken
due to windshield distortion, thermal expansion, creep deformation and vibration et al. In
this case, our experiments showed that SGM and ELAS generate poor results.

To solve the problems mentioned above, we propose a stereo matching algorithm named
Multi-Path-Viterbi (MPV) to generate highly robust and accurate disparity map compared
to state-of-the-art real-time stereo matching algorithms. Our MPV algorithm includes two
parts: the first part estimates disparity by a Viterbi process [13] and the second part estimates
epipolar line distortion by a convex optimization process. Two parts are combined into an
online framework to do stereo matching and auto-rectification simultaneously in real-time.

The first part of algorithm has the following features: (i) We use a bi-directional Viterbi
algorithm at total 4 paths to decode the matching cost space. Bi-directional idea can be
found in the famous BCJR algorithm [2] to decrease the error rate. A hierarchical strategy is
proposed to merge the 4 paths to further decrease the decoding error. (ii) We introduce Total
Variation (TV) [9, 26] constraint into Viterbi path for approximately modeling 3D planes
at different orientations to reach a similar effect as TGV [25] and Slanted-plane models
[4]. (iii) The Viterbi nodes are spanned and interconnected from minimal to the maximum
disparity because the disparity varies dramatically in the outdoor scenario. If the span level
is n, normal Viterbi algorithm needs to perform O(n2) searching. We changed the search
scheme and improved the complexity to O(2n). (iv) We use structural similarity (SSIM)
[33] to measure the pixel difference between left and right images at epipolar lines, instead
of using Birchfield and Tomasi’s pixel dissimilarity [30], sum of absolute differences [22],
normalized cross correlation [24], mutual information [19], or census transform [25] et al.

The second part of algorithm has the following features: (i) A convex optimization equa-
tion is derived to estimate epipolar line distortion based on the output of Viterbi process. We
summarize the properties of the epipolar line distortion caused by normal factors in intelli-
gent vehicle applications. Based on these properties and inspired by the famous optical flow
problem [20], we convert this distortion estimation problem to an optimization problem and
employ the convex optimization theory [7] to solve it. (ii) The Viterbi process and convex
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optimization are integrated into an online framework and two parts benefit each other with-
out losing speed in this framework. It can automatically keep the epipolar line constraint to
avoid the degradation of stereo matching results, which usually happens when other stereo
matching methods being applied for vehicles.

Most of high ranked stereo matching algorithms are based on image segmentation. How-
ever, small objects and complicate scenarios are hardly well segmented by current image
segmentation methods. Our method does not rely on any image segmentation or smoothing.
It is sensitive to edge and has good performance for small objects.

Our algorithm is not only real-time but also has deterministic running time for every
frame. For an image with n pixels and maximum m disparities, the time complexity of our
algorithm is O(nm). Unlike some segmentation-based or global-optimization-based meth-
ods, the running time of our algorithm is independent to the image content. For any 640x480
images with maximum 40 disparities, the running time is about 196ms with GTX TITAN
GPU and Xeon E5-2620 CPU. This feature is helpful for process scheduling of real-time
operating system and data synchronization of multi sensors as well as hardware implemen-
tation.

Unlike other auto-rectification or auto-calibration methods such as [11, 40], our auto-
rectification framework does not estimate intrinsic and extrinsic matrix or the fundamental
matrix but estimate the shifting through the normal of the epipolar line for every pixels.
This nonparametric way makes our method be able to deal with translational, rotational and
even nonlinear misalignment. Another benefit is that it is an online method. If there is a
sudden change to the epipolar geometry, the system can be recovered after several hundreds
of frames.

We did extensive experiments with our vehicle platform in urban and highway area. We
used a 3D LIDAR (Velodyne, HDL-32E) as a ground truth to verify the accuracy of disparity
maps. The results of long time driving courses in outdoor environment proved the robustness
and accuracy of proposed method. Some results of outdoor experiments are presented in the
paper.

2 Method

2.1 Matching Cost
Let I0 and I1 denote the rectified left and right images, (x,y) denote the coordination of pixel
p in I0, u denote the disparity, ϕ denote the N×N image patch located at I0(x,y), and φ

denote the N×N image patch located I1(x− u,y). We use SSIM to measure the matching
cost between ϕ and φ . Define ϕ = {ϕi|i = 1,2, . . . ,N2} and φ = {φi|i = 1,2, . . . ,N2}, where
ϕi and φi are pixels in the patches, and let µϕ , σ2

ϕ and σϕφ be the mean of ϕi, the variance of
ϕi, and the covariance of ϕi and φi, respectively. Approximately, µϕ and σϕ can be viewed
as estimation of the luminance and contrast of ϕ . σϕφ measures the tendency of ϕ and φ to
vary together and is an indication of structural difference. In [33], the luminance, contrast
and structure similarity measures are given as follows:

l(ϕ,φ) =
2µϕ µφ +C1

µ2
ϕ +µ2

φ
+C1

, c(ϕ,φ) =
2σϕ σφ +C2

σ2
ϕ +σ2

φ
+C2

, s(ϕ,φ) =
σϕφ +C3

σϕ σφ +C3
(1)

where C1, C2 and C3 are small constants given by C1 = (K1L)2, C2 = (K2L)2, and C3 =C2/2
respectively. L is the dynamic range of the pixel values. K1� 1 and K2� 1 are two scalar
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constants. The SSIM cost function is defined as

SSIM(p,u) = (1− l(ϕ,φ)α c(ϕ,φ)β s(ϕ,φ)γ)L/2 (2)

where α , β , and γ are parameters to define the relative importance of the above three com-
ponents.

2.2 Viterbi algorithm
We introduce TV constraint [26] in Viterbi path to constrain the disparity variation. As
the matching cost is accumulated in the paths, the TV-constrained Viterbi is approximately
equivalent to a full 2D convex optimization with TV term. Because TV constraint is applied
to all the 4 paths independently, 3D planes at different orientation can be approximately
modeled by at least one path. Therefore it can model the 3D objects with one or multiple
slanted planes. TV constraint is useful to smooth some non-textured areas such as road or car
body which are common in driving scenes but hard for stereo matching algorithms. Besides
that, we also use the intensity gradient information to control the regularization level of TV
constraint and make edges to be sharper. The TV constraint is expressed by defining the
energy E(u) on the disparity map u as follows:

E(u) = ∑
p

SSIM(p,u)+ ∑
p′∈Lp

ε(p′,u′)→(p,u), ε(p′,u′)→(p,u) = λe−|G||u−u′| (3)

In the second term of E(u), ε is the TV constraint modified by the gradient information G of
image I0. It penalizes all the disparity changes between p and p′ which has disparity u′ and
belongs to p’s neighbourhood Lp. λ is the parameter.

Figure 1: Trellis diagram for nodes and
edges in a same Viterbi path.

The problem of stereo matching can now be
formulated as finding the disparity map u that
minimizes the energy function E(u). Viterbi al-
gorithm can be used to approximate the opti-
mum solution [28]. The Viterbi trellis in this
case represents a graph of a disparity states for
all pixels in one Viterbi path as shown in Fig. 1.
Each node in this trellis represents assigned dis-
parity to a pixel and each edge represents a pos-
sible disparity change between two adjacent pix-
els in the same Viterbi path. Let e(p,u) denote
the energy of node with pixel p and disparity u.
We have:

û = argmin
u

E(u)≈ argmin
u

∑
all Viterbi paths

e(p,u) (4)

According to Viterbi algorithm [28]:

e(p,u) = min
u′∈Lu
{e(p−1,u′)+ ε(p−1,u′)→(p,u)+SSIM(p,u)} (5)

Here Lu means the connected nodes from p−1 to (p,u). In normal Viterbi algorithm, node
number of Lu is generally small and the total calculation for one pixel is O(N(u) ∗N(Lu)),
where N(·) indicates the node number. However, in autonomous driving, dramatic disparity
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variation is very common due to the large depth of field in outdoor scenes. Therefore, in our
MPV algorithm, we set the Lu as all the possible Viterbi nodes. This setup can keep edge
sharp for outdoor scenes. However, normal Viterbi algorithms need O(N(u)2) calculation
for one pixel at this setup.

To increase the speed of Viterbi algorithm, we developed a technique to considerably
decrease the number of comparison. The key idea is that we can store the comparison in-
formation at every node after finishing its calculation and use that information for the com-
parison at next node to decrease the comparison number. E.g., at Fig. 1, we separate all
the connections into up part and down part at e(p,u− 1) and e(p,u) shown as solid lines
and dash lines. For any disparity u′ in all solid connections, if (p− 1,u′) is the node at the
minimum route to e(p,u−1), then it is also the node at the minimum route to e(p,u) except
(p− 1,u)→ (p,u). Obviously, this observation establishes if the penalty ε is a monoton-
ically increasing function to the disparity change. Therefore, at e(p,u), we only need to
compare route (p− 1,u′)→ (p,u) and (p− 1,u)→ (p,u) for all solid connections. The
same analysis can be applied to all dash connections. Similar idea can be found in [6, 12].
For our TV constraint case, above analysis can be simplified furthermore. After applying
this trick, the total calculation for the whole image can be reduced to O(N(u)∗N(p)) at our
full connection Viterbi setup.

2.3 Path merging

Figure 2: Hierarchical structure for the
merging of multiple Viterbi paths.

We use 4 bi-directional (horizontal, vertical, and
2 diagonals) Viterbi paths on the matching space
to provide good coverage of the 2D image. Hori-
zontal directions have stronger constraints com-
pared to other directions. In our approach, we
use the results of horizontal directions as strong
posterior information to calculate the optimum
paths of other directions. We define four hierar-
chical levels and the costs of Viterbi nodes are
updated based on the results of previous layer as
shown in Fig. 2.

In each layer, we apply bi-directional Viterbi
algorithm according to Eq. (5). Then, we update
the Viterbi node’s energy by using optimum en-
ergy of the two opposite directions. For horizon-
tal path, we use minimum function to sharpen
edges, and for other paths we use average func-
tion to remove noises. After finishing one layer,
the energy of Viterbi nodes of current layer is
used as the initial value of the energy of Viterbi
nodes at the next layer. More specific strategies
can be applied to the path merging for every lay-
er. E.g. we set a twice penalty to the left Viterbi
in case of changing from small disparity to big
disparity, which help to improve the performance at occluded area.
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2.4 Auto-rectification
The basic idea of our method is based on the following simple observations to the distortion
caused by the windshield: (1) the epipolar line distortion is fixed for a period of time; (2)
the distortion is small; (3) the distortion is smooth; (4) if the distortion and disparity are both
compensated then left image and right image should be approximately same.

Because the disparity map u can be regarded as pixel shifting and can be estimated by
Viterbi process from I0 and I1, we can transform the right image to Ī1 as follows:

Ī1(x,y) = I1(x−u,y) (6)

Eq. (6) is also known as image warping. If there is no distortion and u is totally same as
ground truth, Ī1 should be approximately same as I0. Similarly, the epipolar line distortion
also can be modeled as pixel shifting between left and right images. According to observa-
tion (2), the shifting at horizontal direction does not affect stereo matching. Therefore we
only consider the pixel shifting at vertical direction, which breaks the epipolar line constrain-
t of stereo matching. We define this vertical pixel shifting caused by distortion as vertical
disparity and represent it as v. According to observation (4), we can write:

I0(x,y)≈ Ī1(x,y+ v) (7)

Then the distortion estimation problem becomes how to estimate v by given I0 and Ī1. Con-
sidering Eq. (7) and the observation (2) and (3), we can follow the same deviation to solve
optical flow problem in [20] and get:

v̂ = argmin
v

∫
|Ī1(x,y+ v)− I0(x,y)|2 +λ |∇v|2 dxdy (8)

where | · | is L2 norm and λ is the parameter to control the smoothness weight of distortion.
We can solve the problem according to the convex optimization theory [7]: Rewrite I0,

Ī1, and v into vector form, apply 1st-order Taylor expansion to the first term of Eq. (8), and
apply the anisotropic approximation [34] to the second term of Eq. (8) then we can write:

v̂ = argmin
v
{|Ī1(x,y+ v0)+ Īy

1 · (v− v0)− I0|2 +λ |vx|2 +λ |vy|2} (9)

where Īy
1 means y derivative of Ī1, v0 is the initial value of v, vx is x derivative of v, and vy is

y derivative of v. Rewrite the deviation as matrix form and transform Eq. (9) as follows:

v̂ = argmin
v
{|C1v+b|2 +λ |C2v|2 +λ |C3v|2} (10)

where C1 is Īy
1 , C2 is the x deviation matrix, C3 is the y deviation matrix, b is Ī1(x,y+ v0)−

Īy
1v0− I0. We can solve Eq. (10) by solving the following equation:

∂ (|C1v+b|2 +λ |C2v|2 +λ |C3v|2)
∂v

= 0 (11)

Finally we have the equation:

(CT
1 C1 +λCT

2 C2 +λCT
3 C3)v =−CT

1 b (12)

Eq. (12) can be easily solved by least squares method. It should be noted that several it-
erations are necessary because the Taylor expansion is feasible only near v0. Therefore v0
is set to 0 at beginning of the iteration and is set to the result of previous iteration at other
iterations.
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Figure 3: Framework of automatic on-
line rectification.

We can calculate v for several continuous
frames. According to observation (1), all the
results should be approximately same. There-
fore we can distinguish outliers and average all
the inliers to improve the robustness. This pro-
cess does not need to be run in real-time for all
frames. Generally running once for several hun-
dred frames is enough to follow the changing
of v. After a v matrix is estimated, it can be
used to compensate the next hundreds of images
obtained by stereo cameras. The compensation
process is similar as Eq. (6). The whole frame-
work can be shown as Fig. 3.

3 Experiments
We did four kinds of experiments to evaluate the proposed method. First, we compare our
algorithm with an open source SGM algorithm: OpenCV semi-global block matching (S-
GBM) at some ideal images. Here, we only show the comparison for small objects and
non-texture area because of limited space. Second, we evaluate our algorithm at the classi-
cal Middlebury benchmark [27]. Third, we compare our algorithm with SGBM and ELAS
at the KITTI benchmark [18]. Finally, we test the proposed algorithm in our experimental
autonomous vehicle at real driving environments.

(a) (b) (c) (d)

Figure 4: Random-dot stereogram
test. (a): Random-dot stereogram; (b):
Ground truth; (c): MPV result; (d): S-
GBM result. Row 1: Simulation for s-
mall objects; Row 2: Simulation for non-
texture area. Red rectangle indicates the
border of ground truth. White rectangle
indicates the occluded area.

Our algorithm has very few parameters and
the parameters except maximum disparities do
not need to be changed for almost all scenarios.
This is one of merits of our algorithm. In all of
the following experiments, we set the window
size of SSIM as 5x5 pixels and other parameter-
s of SSIM as its original paper. The weight of
TV constraint is set to 10 and the maximum dis-
parity is set according to the scenarios. The pa-
rameters of SGBM and ELAS are set according
to KITTI website. For the sake of convenience,
we denote our multi-path-Viterbi stereo match-
ing algorithm as MPV.

1. We use random-dot stereogram to gen-
erate ideal images and compare the result with
SGBM as shown in Fig. 4.

The first row in Fig. 4 simulates the ideal sit-
uation with rich texture and can be considered
as an extreme case of scenario with full of small
objects. In this case, segmentation-based method cannot improve the result. According to
Fig. 4, our method has better edge performance than SGBM. On the other hand, SGBM has
better performance at the occluded area because our method currently does not apply any
post processing such as left-right consistency check to remove errors at the occluded area.
However, occluded areas are usually small for outdoor scenarios and only obstacles near the
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(a) Tsukuba (b) Venus (c) Teddy (d) Cones
Figure 5: Middlebury Results.
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Figure 6: KITTI Results.

vehicle can generate large occluded area in the image. When it occurs, detecting the obstacle
and its precise distance is more important than generating smooth disparities at the occluded
area. Therefore we mainly rely on the merging strategy of Viterbi paths to handle occlusion
instead of time consuming post processing methods. On the other hand, if two GPUs are
equipped, the left-right consistency check can be easily applied to detect occlusion without
losing speed. The second row in Fig. 4 simulates the ideal situation without any texture and
can be considered as an extreme case of scenario with a large non-texture area. In this case,
many algorithms including SGBM fail due to the local minimum problem. According to
Fig. 4, the performance of our method is much better than SGBM.

Image nonocc all disc

Tsukuba 3.54 5.26 15.9
Venus 1.16 2.57 11.6
Teddy 7.92 17.0 18.8
Cones 4.64 14.6 12.7

Table 1: Middlebury Results.
nonocc: non-occluded region; all:
all region; disc: regions near discon-
tinuities.

2. We evaluate our algorithm by Middlebury
benchmark and get Table 1 and Fig. 5. Table 1 shows
the pixel error rate with threshold of 1 pixel. The
final average error rate is 9.64%. According to Mid-
dlebury website, our method has similar result with
other real-time methods. It should be noticed that our
algorithm currently does not include any pre and post
processing such as image smoothing, peak filter, left-
right consistency check, intensity consistent disparity
selection, and discontinuity preserving interpolation
et al. Pre or post processing has significant effects e-
specially for Middlebury images. It usually needs to
be carefully tuned to handle specific structured environments and tends to lose robustness
when situation changing. Especially for volatile scenarios in autonomous driving, normal
post processing will generate error or lose important information at some situations.

3. We did an objective evaluation at the KITTI datasets. We use the KITTI training
dataset which includes total 194 images and use the development kit in KITTI website to
do the evaluation. The error rates for every image compared with SGBM and ELAS can be
found at Fig. 6. The left part of the figure shows the error rate for every image in KITTI
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training dataset. The right part shows the box plot of all results. Our method has 7.38%
average error rate compared to SGBM’s 12.88% and ELAS’s 11.99%. Both the box plot
and average indicate that our MPV method obviously has better performance than SGBM
and ELAS. Compared with SGBM, one of the most fundamental differences is that our
method has several hierarchical steps to merge the cost of multiple paths. On the contrary,
SGM or its derivatives use sum of the cost at different directions such that Total Cost =
∑(Direction1 +Direction2 + . . .). The hierarchical steps in MPV form a deep structure and
can help to remove the errors generated in previous paths. Furthermore, these steps weight
horizontal direction in essential. This is a good priori for the scenarios with big road area
and can help to generate correct road surface in disparity map.

In Fig. 9, we compared our methods to the top-ranked algorithm PCBP-SS in KITTI for
generating disparities of small poles. Our method can generate better shape for objects and
can keep the small pole in disparity map very clearly compared with PCBP-SS. It verifies
the simulation of small objects as shown in Fig. 4.

Figure 7: Our experimental car and the
stereo camera.

4. We evaluated our method on our exper-
imental autonomous car with the stereo camera
being installed outside as shown in Fig. 7. The
selected stereo camera is Bumblebee BBX3-
13S2C-38. We compared the distance measured
by precise laser rangefinder and the distance cal-
culated by our stereo matching algorithm. The
difference between these two distances can be
found in Fig. 8. The legend shows formulas
which are used to calculate distance from dis-
parity. The formula of red line is determined by the parameters which come from camera
calibration. The formula of green line is determined by parameters which come from curve
fitting. Theoretical error is given by the hardware specification of Bumblebee camera. The
fluctuation of red and blue lines is caused by the rounding error of disparity values. The real
error is mainly dominated by theoretical error and also influenced by calibration and stereo
matching methods. According to Fig. 8, our stereo matching algorithm does not bring extra
system errors to the results.
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Figure 8: Distance precision.

We also tested our methods with the stereo
camera being horizontally installed behind the
windshield. After the camera was installed,
an offline calibration and rectification had been
conducted to initialize our auto-rectification
framework. After a period of driving, smal-
l shifting and distortion between epipolar lines
would occur. In this situation, most stereo
matching algorithms will generate lots of errors
without manually calibration and rectification a-
gain. Our method generates much better result
in real-time with the online rectification frame-
work. As shown in Fig. 10, column (a) is images captured by stereo cameras behind wind-
shield, column (b) is results of our algorithm before online rectification, and column (c) is
our final results after online rectification. It is clear that the errors caused by distortion are
removed. Real driving videos including featured cases and typical failure cases can be found
in the supplementary material.
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Figure 9: KITTI results. Row 1: Test
image 18; Row2: Our Result; Row 3:
PCBP-SS Result.

(a) Images (b) Before (c) After

Figure 10: Auto-rectification results.

4 Conclusion
This paper proposes an accurate and highly robust real-time stereo matching for Advanced
Driving Safety Systems or autonomous driving. We have evaluated our algorithm with com-
parison to the well-known SGBM in both ideal images and real driving experiments and
achieved an improvement of 5.5% to SGBM’s pixel error rate at the KITTI training dataset.
The experiment results have shown that the proposed method has less local minimum prob-
lems compared to SGBM and can accurately estimate the depth at pixel level for detailed
structures of outdoor environments. Furthermore, real-world testing has shown that the pro-
posed online auto-rectification framework can significantly reduce the performance degra-
dation due to nonlinear epipolar line distortion or shifting caused by vehicle windshield or
long-term driving.
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