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Abstract

Nowadays, classifiers play a core role in many computer vision tasks. The underly-
ing assumption for learning classifiers is that the training set and the deployment envi-
ronment (testing) follow the same probability distribution regarding the features used by
the classifiers. However, in practice, there are different reasons that can break this con-
stancy assumption. Accordingly, reusing existing classifiers by adapting them from the
previous training environment (source domain) to the new testing one (target domain)
is an approach with increasing acceptance in the computer vision community. In this
paper we focus on the domain adaptation of deformable part-based models (DPMs) for
object detection. In particular, we focus on a relatively unexplored scenario, i.e. incre-
mental domain adaptation for object detection assuming weak-labeling. Therefore, our
algorithm is ready to improve existing source-oriented DPM-based detectors as soon as a
little amount of labeled target-domain training data is available, and keeps improving as
more of such data arrives in a continuous fashion. For achieving this, we follow a multi-
ple instance learning (MIL) paradigm that operates in an incremental per-image basis. As
proof of concept, we address the challenging scenario of adapting a DPM-based pedes-
trian detector trained with synthetic pedestrians to operate in real-world scenarios. The
obtained results show that our incremental adaptive models obtain equally good accuracy
results as the batch learned models, while being more flexible for handling continuously
arriving target-domain data.

1 Introduction
Nowadays, classifiers play a core role in many computer vision tasks such as scene clas-
sification, object recognition, or object detection, among others. In many successful cases
the classifier is learned from a training set containing both positive (examples) and negative
samples (counter-examples). In this context, there are two relevant aspects worth to remind.
First, collecting a training set is not a cost-free process since the required images must be
acquired and the positive/negative samples labeled. In most of the cases, the labeling is
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a tiresome manual operation prone to errors. Moreover, in many real applications image
acquisition involves the deployment of equipment and personnel for days or months, i.e.,
the images are not just there. Second, the underlying assumption for learning classifiers is
that the training set and the deployment environment (testing) follow the same probability
distribution regarding the features used by the classifiers.

In practice, there are different reasons that can break the constancy assumption of the
probability distribution of the feature space. For instance, differences between training and
testing data in terms of sensor quality, image resolution, predominant object poses and views,
etc. Overall, these factors can cause a significant drop in the accuracy of the learned clas-
sifiers. Of course, if a sufficient amount of training data for the new testing domain is col-
lected, we may consider retraining the classifiers. However, as we have pointed out, data
collection can be costly and, therefore, in the general case doing so is not the optimal use
of resources. Accordingly, reusing the existing classifiers by adapting them from the pre-
vious training environment (source domain) to the new testing one (target domain) is an
approach worth to pursue and with increasing acceptance in the computer vision community
[10, 11, 12, 16, 19, 20].

In this paper we focus on domain adaptation for object detection, using the on-board
pedestrian detection task [8] as proof of concept. In particular, we will assume the use of the
deformable part-based model (DPM) for representing the objects, since it is a recognized
state-of-the-art method for both object detection in general [7] and pedestrian detection in
particular [3]. Moreover, we focus on performing an incremental domain adaptation of
DPM-based object detectors. The main benefit is to have an algorithm ready to improve
existing source-oriented detectors as soon as a little amount of labeled target-domain training
data is available, and keep improving as more of such data arrives in a continuous fashion.
Note that, in opposition, a batch approach would wait until all the new labeled training data
is available, and then run the adaptation by considering all the training samples at a time. In
fact, we even consider a weak-labeling setting, which has two potential advantages. Firstly,
gaining robustness to the variability on the bounding box location of each pedestrian, due
to the fact of being a manually collected ground truth. Secondly, this allows to consider
the scenario where the adapted detector self-labels target-domain training examples (e.g.,
pedestrian bounding boxes) by detection; thus, reducing the manual work to the rejection of
false positives (or acceptance of true ones).

Overall, as we will overview in section 2, we focus on a relatively unexplored scenario,
i.e. incremental domain adaptation for object detection assuming weak-labeling. In section
3, we present our adaptation model as a weighted ensemble of source- and target-domain
classifiers. This model is inspired in online transfer learning (OTL) [23]; however, contrarily
to OTL, our method does not operate on a per-sample basis since it performs a per-image
adaptation. In particular, the ensemble weights are time-dependent (i.e., understanding time
instants as those when new target-domain training data is available) to rely more on the
source-domain classifier or on the target-domain one. At the same time, as explained in
section 4, the target-domain classifier is also time-dependent and continuously updated from
weakly-labeled target-domain training data. The weak labels are handled by following a
multiple instance learning (MIL) paradigm for DPM training. In particular, we modify the
CCCP (concave-convex procedure) at the core of DPM 5.0 [9] for operating in an incremen-
tal per-image basis.

We evaluate our overall proposal in section 5. In particular, following [20, 21], we ad-
dress the challenging scenario of adapting a DPM-based pedestrian detector trained with
synthetic pedestrians to operate in real-world scenarios. The obtained results show that our
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incremental adaptive models obtain equally good accuracy results as the batch learned mod-
els, while being more flexible for handling continuously arriving target-domain data. Finally,
in section 6 we summarize our main conclusions and future work.

2 Related Work

Domain adaptation is receiving growing attention in the computer vision community. How-
ever, most of the research in this line focus on object recognition [4, 16] and recently on
object detection [12, 20]. The most related work to ours is the online transfer learning (OTL)
framework [23], which is based on ensemble learning. It learns a classifier online with data
from the target domain, and combines it with the source domain classifier. The combination
weights are adjusted dynamically according to the loss of the two classifiers on the target
domain samples. We extended this framework to incrementally adapt a detector. The recent
work of [19] is also an extention of OTL while focusing on multiple category object recogni-
tion. The online domain adaptation of [12] has a similar setting to ours, while the employed
Gaussian Process Regression requires a large number of samples from each testing image
and thus only certain applications such as face detection can benefit from that method. The
work of [11] proposes a continuous manifold domain adaptation method for an evolving vi-
sual domain, e.g., traffic scene images taken at different time over the year. Different to [11],
our method aims at performing a continuous domain adaptation with arbitrary target domain
samples.

Our work is also related to multiple instance learning (MIL). MIL can be used for training
with weakly-labeled data [2, 15] and several online MIL methods have been successfully
applied to object tracking [1, 13, 14]. The batch mode adaptive multiple instance learning
method [14] has a similar incremental learning strategy to ours, i.e., using an online Passive
Aggressive (PA) learning paradigm [18] for learning a new classifier based on a previously
learned classifier. In contrast to previous MIL work, our learning algorithm is based on
weak-label structural SVM (WL-SSVM) [9] and it can be applied to structural models, e.g.,
DPM as we present in this paper. Our incremental MIL is a natural design for the OTL
framework and we combine it with OTL for incremental domain adaptation.

3 Incremental Domain Adaptation Framework

We propose a frame by frame incremental domain adaptation framework for object detection.
Suppose we are given a set of training samples (x1,y1,h1), . . . ,(xN ,yN ,hN) ∈ X ×Y ×H,
where X is the input space, Y = {+1,−1} is the label space, andH is the hypothesis or out-
put space. The DPM [7], the decision function can be written as f (x) = maxh∈H w′Φ(x,h),
where Φ(x,h) is a joint feature vector.

Our method is an extension of the Online Transfer Learning (OTL) algorithm proposed in
[23]. The basic idea is to learn an ensemble classifier f E(x) which is a weighted combination
of the source domain classifier f S(x) and target domain classifier f T

t (x) at time t of the
incremental learning task. We denote by γS

t and γT
t the combination coefficients. At time t,

given a sample x, the ensemble decision function is written as follows:

f E(x) = γ
S
t f S(x)+ γ

T
t f T

t (x), (1)
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Figure 1: Incremental Multiple Instance Learning framework. (a) Multiple instance learning
on a single frame. Bags are denoted by ellipses and their instances by rectangles. In this
example, bags 1, 2, and 3 are positive ones, while bag 4 is negative. (b) Diagram of the
frame by frame incremental adaptive learning. f T

t (x) is the classifier trained by multiple
instance learning (MIL) with current target image, while the final target-domain adapted
classifier is f E .

where f T
t (x) is updated incrementally each time. Note that f S(x) and f T

t (x) are not indepen-
dent as they maximize over the same h at training and testing time. In addition to updating
f T
t (x), the two coefficients γS

t and γT
t are adjusted dynamically. The following updating

scheme can be extended from OTL [23]:

γS
t =

γS
t−1gt−1(ȳS

i ,yi)

Γt−1
, γT

t =
γT

t−1gt−1(ȳT
i ,yi)

Γt−1
, (2)

where Γt = γS
t gt(ȳS

i ,yi)+γT
t gt(ȳT

i ,yi), ȳS
i is the predicted label by f S and ȳT

i by f T
t−1, gt(ȳi,yi)=

1
Nt

∑
Nt
i=0 exp{−1

2
l∗(Π(ȳi),Π(yi))}, Nt is the number of target domain training samples at

time t, Π(s) = max(0,min(1,
s+1

2
)) is a normalization function, and l∗(ȳ,y) = (ȳ− y)2 is

the square loss we use.

4 Learning in the target domain
In this section, we introduce the incremental learning of the classifier f T

t (x) in the target do-
main. We propose a method to train a DPM in a MIL manner using the weak-label Structural
SVM (WL-SSVM). In Section 4.1 we first introduce the batch MIL learning with collected
samples from a single frame and then in Section 4.2 we focus on the incremental setting,
explaining the frame by frame incremental MIL learning of the DPM. Finally, we combine
the incremental MIL with our proposed domain adaptation framework and present in detail
the learning algorithm.

4.1 Multiple Instance Learning with WL-SSVM
The weak-label structural SVM (WL-SSVM) [9] is a discriminative training formalism for
learning models from weakly-labeled samples. It generalizes the structural SVM, the latent
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structural SVM and also includes the latent SVM as a special case. WL-SSVM minimizes
the following objective function:

J(w) =
1
2
‖w‖2 +C ∑

N
i=1Lsurr(w,xi,yi,hi), (3)

where C > 0 is the trade-off parameter, Lsurr is the surrogate training loss which is defined
in terms of two different loss augmented predictions:

Lsurr(w,xi,yi,hi) = maxh∈H[w′Φ(xi,h)+Lmargin(yi,hi,h)]−
maxh∈H[w′Φ(xi,h)−Lout put(yi,hi,h)].

(4)

Let y be the predicted label according to the overlap of hi and h, e.g. using PASCAL criterion
[6]. Lmargin is the 0-1 loss, i.e., if yi = y, Lmargin = 0, otherwise 1. Lout put is a 0-∞ loss, i.e.,
if yi = y, Lout put = 0, otherwise ∞. The overlap threshold in Lmargin is 50% while in Lout put
is 70%. We refer the reader to [9] for more details.

We focus on training a DPM with samples from a single image and formulate the train-
ing as a multiple instance learning (MIL). Assume we received a training image It at time
t. We first extract all the positive samples from It . These positive samples can be either ob-
tained from human annotations, a pre-trained detector, or even a pre-trained detector aided
by a human oracle. These annotations are generally in a form of bounding boxes, which
may be prone to errors and not necessarily the best ground truth for a supervised learning
algorithm. Therefore, they can be regarded as weakly-labeled samples. Image windows with
low overlapping with the positive samples are considered negative samples.

We consider the task of training a DPM detector with weakly-labeled samples in a MIL
manner. We treat each sample, (xi,yi,hi), as a initial ground truth and additionally we
include multiple possible outputs related to this sample to form a bag of instances. We
denote by B+ a positive bag and B− a negative bag. The bags and instances are illustrated
in Figure 1 (a). The alternative outputs h in B+ are collected according to the following
condition:

w′Φ(xi,hi)−w′Φ(xi,h)< Lmargin(yi,hi,h)+ ε and h 6= hi, (5)

where ε is a constant tolerance parameter set in practice to 0.001. It is equivalent to find the
most violate outputs of sample xi. The negative bags are collected from the image patches
not contained in B+. We restrict each positive bag to contain only one belief instance, i.e.,
h∗, and this instance will play the role of ground truth output. For the negative bag B−, there
is a constant background belief instance h∗, which corresponds to the feature vector 0. We
iteratively train a DPM model as follows: (1) Fixing the belief instances in each bag and
learning a new model w with Eq. (3). (2) Updating the positive belief instances in each bag
with the current model w. The learning terminates when the belief instances in each positive
bag do not change. The belief in B+ is computed by the following equation:

h∗ = argmax
h∈H

[w′Φ(xi,h)−Lout put(yi,hi,h)]. (6)

The complete algorithm of WL-SSVM-based MIL is illustrated in Alg. 1.

4.2 Incremental Multiple Instance Learning
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Algorithm 1 Multiple Instance Learning with WL-SSVM
Input: target-domain training image It , initial model w0
Output: new model w
0: w← w0
1: Collect positive samples from It using root bounding boxes {(xi,yi,hi)}.
Part locations in hi are initialized by finding the best detection using w0.
2: Initialize positive bags B+i ← {(xi,+1,hi)}.
3: Augment positive bags by Eq. (5), B+i ← {(xi,+1,h)|h ∈H},
initialize the belief instance of B+i by h∗← hi.
4: Collect negative samples and build one negative bag B−← {(x j,−1,h j)},
initialize the belief instance of B− with 0.
5: repeat
6: Update w by minimizing the objective function (3).
7: Compute the new belief instances of each bag by (6).
8: until belief instances do not change

Algorithm 2 Incremental Domain Adaptation
Input:
source classifier f S

target images {It , t ∈ [1,N]}
Output: f E = γS

N f S + γT
N f T

N
0: f T

0 ← f S, γS
1 = γT

1 ← 0.5
1: for t=1,2, ..., N, do
2: Receive image It , collect samples D← {(xi,yi)}.
3: Predict ȳS

j by f S, and ȳT
j by f T

t−1, j ∈ {1,Nt}.
4: Compute γS

t and γT
t by (2).

5: Generate training bags for MIL (Alg. 1 line 2-4).
6: Learn f T

t with the collected bags (Alg. 1 line 5-8).
7: end for

We apply an incremental learning strategy similar to [14] for training a frame-by-frame
adaptive classifier. Assume we receive an image It at time t and we learn f T

t on that image
by updating f T

t−1 learned at time t−1. Motivated by the online learning algorithms [18] and
[14], we define f T

t on instance x as follows:

f T
t (x) = max

h∈H
[w′t−1Φ(x,h)+(w′t −w′t−1)Φ(x,h)] = f T

t−1(x)+∆ f T
t (x), (7)

where ∆ f T
t (x) is the perturbation function. Given the training bags with instances xi, . . . ,xNt ,

we learn the parameters wt in the perturbation function by minimizing the following objec-
tive function:

J(wt) =
1
2
‖wt −wt−1‖2 +C

Nt

∑
i=1
Lsurr(wt ,xi,yi,hi). (8)

The optimization of the objective function (8) can be solved by L-BFGS [17] in the primal
form. It only requires computing the objective value and the partial derivatives with respect
to wt . With the above learning strategy, f T

t can be embedded into the proposed domain
adaptation framework in Section 3. The complete algorithm is presented in Alg. 2.
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5 Experiments
We evaluate the proposed method on several pedestrian datasets. We use a synthetic dataset
[22] to train our source domain DPM detector, and adapt it to multiple real-world datasets.
We use the three subsets from the ETH dataset [5] as our target domains, namely ETH0,
ETH1 and ETH2, as they are recorded in three different scenarios and under different il-
lumination conditions.We follow the standard Caltech evaluation criterion [3] and plot the
average miss rate vs false positive per image (FPPI) curves. Each target dataset is randomly
split into a train/test pair. In particular, in each case, we use 50 random images for training
and the rest for testing. We run each experiment three times and compute the resulting mean
and standard deviation per experiment.

5.1 Supervised Domain Adaptation
We train different types of classifiers as shown in Table 1. First, we compare our incremental
domain adaptive classifier to the batch-mode learned classifiers as it can be seen in the first
column of Figure 2.

Table 1: Different types of learned classifiers.

SRC Source domain classifier (no adaptation).

BAT-TAR Target domain classifier trained in batch-mode with the selected labeled 50 images. It
is simply a re-training of DPM, i.e., no adaptation.

INC-Dyn-[W1=Ws] Incremental domain adaptation where the coefficients of the source and target
classifiers are updated during the training, and the target model w is initialized by wS .

INC-Fix-[W1=0] Incremental domain adaptation where the coefficients of the source and target
classifiers are fixed, and the target model w is initialized with vector 0.

INC-Fix-[W1=Ws] Incremental domain adaptation where the coefficients of the source and target
classifiers are fixed, and the target model w is initialized with wS .

BAT-ADP

Batch domain adaptation by considering all the target training samples at once. We
extend Eq. (8) to train with samples from multiple images, i.e.

min
1
2
‖wT −wS‖2 +C ∑

N
i=1 Lsurr(wT ,xi,yi,hi).

From the experimental results, we can see that both BAT-ADP and INC-Dyn-[W1=Ws]
are effectively adapted to the target domain, comparing to the source classifier SRC. INC-
Dyn-[W1=Ws] accuracy is not too far from the one of BAT-ADP in ETH1 and ETH2 datasets.
Batch learned BAT-TAR turns out to have very low accuracy results due to the low number
of target-domain training data, showing the convenience of using such data for performing
domain adaptation. Next, we investigate the impact of different parameters in the learning
of the incremental domain adaptation method as can be appreciated in the second column of
Figure 2.

With the coefficients fixed, INC-Fix-[W1=Ws] outperforms INC-Fix-[W1=0] signifi-
cantly on the three datasets, showing the importance of the initialization of the incremental
target domain classifier f T

t (x). With dynamic updating, INC-Dyn-[W1=Ws] achieved better
accuracy than INC-Fix-[W1=Ws] on all the target datasets, showing the effectiveness of the
incremental adaptive learning.

To further understand the dynamic changes during the incremental adaptive learning, we
plot the average square loss (i.e., l∗(ȳ,y) = (ȳ− y)2) and coefficients (i.e., γS

t , γT
t ) of the

source f S(x) and target f T
t (x) classifiers in each training image (or incremental iteration).

Figure 3 shows the results on the three training datasets. The incrementally learned target
domain classifier f T

t (x) shows constantly lower average loss on the training images. The
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Figure 2: Results of adapting a DPM pedestrian detector trained with synthetic images to
operate in ETH pedestrian dataset.
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Figure 3: (a)-(c) Average square loss of the source and target classifier in each iteration. (d)
Coefficient (γS

t ,γ
T
t ) changes at each iteration.
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curves of γS
t and γT

t show that the source classifier plays a less important role as f T
t (x)

gradually adapts to the target domain. Figure 3 (d) also shows that the source classifier is
adapted to the target domain rapidly, as γT

t reached more than 0.8 after the first 45 frames.

5.2 Incremental Domain Adaptation with Human in the Loop
In this experiment, we use unlabeled target domain samples for the incremental adaptive
learning. We designed an interactive incremental learning framework to include a human
oracle in the loop. The human oracle is allowed to only remove the false positives by sim-
ple clicks in each training image. In this case, the training samples collected by the source
detector are largely weakly-labeled. We compare the adapted model trained with MIL, de-
noted by INT-MIL, with a model that does not include MIL, denoted by INT (INT stands for
interactive).

The results are shown in the second column of Figure 2. It can be seen that INT-MIL
improves the accuracy of the adapted classifier around 2 percentage points compare to INT,
showing the effectiveness of the MIL. However, there is still a gap between INT-MIL and the
fully supervised learning with original ground truth, i.e., INC-Dyn-[W1=Ws]. This may be
due to the false negative samples, i.e., some pedestrians are not considered during training.

6 Conclusion
In this paper, we present an incremental domain adaptation framework applied to the de-
formable part-based model for object detection. A dynamic adaptation strategy, inspired in
an online transfer learning method, learns an ensemble of the source and target domain clas-
sifiers. At each iteration, a new target domain classifier is learned on the underlying image.
We apply weak-label structural SVM for handling weakly-labeled samples and formulate the
training in a multiple instance learning paradigm. The conducted experiments on pedestrian
detection show the effectiveness of the proposed method. The incremental domain adaptation
achieves comparable accuracy results to the batch learned model while being more flexible
for learning with continuously coming target domain data. In the future, we plan to focus on
improving the incremental domain adaptation with unlabeled target domain images.
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