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Abstract

This paper addresses the problem of semantic part parsing (segmentation) of cars,
i.e. assigning every pixel within the car to one of the parts (e.g. body, window, lights, li-
cense plates and wheels). We formulate this as a landmark identification problem, where
a set of landmarks specifies the boundaries of the parts. A novel mixture of graphical
models is proposed, which dynamically couples the landmarks to a hierarchy of seg-
ments. When modeling pairwise relation between landmarks, this coupling enables our
model to exploit the local image contents in addition to spatial deformation, an aspect
that most existing graphical models ignore. In particular, our model enforces appearance
consistency between segments within the same part. Parsing the car, including finding
the optimal coupling between landmarks and segments in the hierarchy, is performed by
dynamic programming. We evaluate our method on a subset of PASCAL VOC 2010 car
images and on the car subset of 3D Object Category dataset (CAR3D). We show good
results and, in particular, quantify the effectiveness of using the segment appearance con-
sistency in terms of accuracy of part localization and segmentation.

1 Introduction
This paper addresses the two goals of parsing an object into its semantic parts and performing
object part segmentation, so that each pixel within the object is assigned to one of the parts
(i.e. all pixels in the object are labeled). More specifically, we attempt to parse cars into
wheels, lights, windows, license plates and body, as illustrated in Figure 1. This is a fine-
scale task, which differs from the classic task of detecting an object by estimating a bounding
box.

We formulate the problem as landmark identification. We first select representative loca-
tions on the boundaries of the parts to serve as landmarks. They are selected so that locating
them yields the silhouette of the parts, and hence enables us to do object part segmentation.
We use a mixture of graphical models to deal with different viewpoints so that we can take
into account how the visibility and appearance of parts alter with viewpoint (see Figure 2).
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Figure 1: The goal of car parsing is to detect the locations of semantic parts and to perform
object part segmentation. The inputs (left) are images of a car taken from different view-
points. The outputs (right) are the locations of the car parts – the wheels, lights, windows,
license plates and bodies – so that each pixel within the car is assigned to a part.

front / back right front / left back I right front / left back II right side 

Figure 2: The proposed mixture-of-trees model. Models of left-front, right-back and right
views are not shown due to the symmetry. The landmarks connected by the solid lines
of same colors belong to the same semantic parts. The black dashed lines show the links
between different parts. Best view in color.

A novel aspect of our graphical model is that we couple the landmarks with the seg-
mentation of the image to exploit the image contents when modeling the pairwise relation
between neighboring landmarks. In the ideal case where part boundaries of the cars are all
preserved by the segmentation, we can assume that the landmarks lie near the boundaries
between different segments. Each landmark is then associated to the appearance of its two
closest segments. This enables us to associate appearance information to the landmarks and
to introduce pairwise coupling terms which enforce that the appearance is similar within
parts and different between parts. We call this segmentation appearance consistency (SAC)
between segments of neighboring landmarks. This is illustrated in Figure 3, where both of
the two neighboring landmarks (the red and green squares) on the boundary between the
window and the body have two segments (belonging to window and body respectively) close
to them. Segments from the same part tend to have homogeneous color and texture appear-
ance (e.g. a and c, b and d in the figure), while segments from different parts usually do not
(e.g. a and b, c and d in the figure). The four blue dashed lines in the figure correspond to
the SAC terms whose strengths will be learnt.

However, in practice, it is always impossible to capture all part boundaries using single
level segmentation. Instead, people try to use a pool of segmentations [3, 11, 14] or seg-
mentation trees [1, 15, 26]. Inspired by those, we couple the landmarks to a hierarchical
segmentation of the image. However, the difference of the sizes of the parts (e.g. the license
plate is much smaller than the body) and the variability of the images mean that the optimal
segmentation level for each part also varies. Therefore the level of the hierarchy used in this
coupling must be chosen dynamically during inference/parsing. This leads us to treat the
level of the hierarchy for each part as a hidden variable. By doing this, our model is able
to automatically select the most suitable segmentation level for each part while parsing the
image.
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Figure 3: Illustration of segmentation appearance consistency (SAC) and segment pairs.
Red and green squares represent two neighboring landmarks lying on the boundary between
window and body. Each landmark has two segments (a and b for the red landmark, c d
for the green landmark) close to it. Our method models and learns the SACs for every
pair of neighboring landmarks (blue dashed lines) and uses them to enhance the reliability
of landmark localization. For the blue landmark, its segment pair is the same as the red
landmark, which is the closest one on the boundary.

2 Related Work

There is an extensive literature dating back to Fischler and Elschlager [10] which represents
objects using graphical models. Nodes of the graphs typically represent distinctive regions
or landmark points. These models are typically used for detecting objects [8, 9] but they can
also be used for parsing objects by using the positions of the nodes to specify the locations of
different parts of the object. For example, Zhu et al. [28, 29] uses a compositional AND/OR
graph to parse baseball players and horses. More recently, in Zhu and Ramanan’s graphical
model for faces [30] there are nodes which correspond to the eyes and mouth of the face.
But we note that these types of models typically only output a parse of the object and are not
designed to perform object part segmentation. They do not exploit the SAC either.

Recently, a very similar graphical model for cars has been proposed by Hejrati and Ra-
manan [13], which cannot do part segmentation since each part is represented by only one
node. The more significant difference is that the binary terms do not consider the local image
contents.

There are, however, some recent graphical models that can perform object part segmenta-
tion. Bo and Fowlkes [2] use a compositional model to parse pedestrians, where the semantic
parts of pedestrians are composed of segments generated by the UCM algorithm [1] (they
select high scoring segments to form semantic parts and use heuristic rules for pruning the
space of parses). Thomas et al. [24] use Implicit Shape Models to determine the semantic
part label of every pixel. Eslami and Williams [5] extend the Shape Bolzmann Machine to
model semantic parts and enable object part segmentation. [24] and [5] did car part seg-
mentation on ETHZ car dataset [24], which contains non-occluded cars of a single view
(semi-profile view).

Image labeling is a related problem since it requires assigning labels to pixels, such as
[4, 7, 16, 17, 22, 25]. But these methods are applied to labeling all the pixels of an image,
and are not intended to detect the position of objects or perform object part segmentation.
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 Level 1 (lowest)  Level 2  Level 3  Level 5  Level 6  Level 4 

Figure 4: The segments output by SWA at six levels. Note how the segments covering
the semantic parts change from level 1 to level 6 (e.g. left windows and left wheels). This
illustrates that different parts need different levels of segmentation. For example, the best
level for the left-back wheel is level 4 and the best level for the left windows is level 5. Best
view in color.

3 The Method for Parsing Cars
The silhouette, and hence the segment of a part is defined by the polygon formed by the
landmarks of the part. This allows us to formulate the segmentation problem as landmark
localization. We model the landmark points and their spatial configuration as a mixture of
tree-structured graphical models, one model for each viewpoint. The model is represented
by G = (V,E). The nodes V correspond to landmark points. They are divided into subsets
V =

⋃N
p=1Vp, where N is the number of parts and Vp consists of landmarks lying at the

boundaries of semantic part p. The edge structures E are manually designed (see Figure 2).
We define an energy function for each graphical model, which consists of unary terms

at the landmarks and binary terms at the edges. The binary terms not only model the spatial
deformations as in[9, 30], but also utilize local image contents, i.e. the segment appearance
consistency (SAC) between neighboring landmarks.

To do that, we couple the landmarks to a hierarchical segmentation of the image which
is obtained by the SWA algorithm [21] (see Figure 4 for a typical SWA segmentation hier-
archy). Then we associate with each image location at every segmentation level a pair of
nearby segments: If a location is on the segment boundary, the two segments are on either
sides of the boundary, otherwise it shares the same segment pairs with the nearest boundary
location. Then SAC terms are used to model the four pairings of segments from neighboring
landmarks (blue dashed lines in Figure 3 for example). The strengths of SAC terms are learnt
from data. In order to do the learning, the four pairings need to be ordered, or equivalently,
the two segments of each location need to be represented in the form of an ordered tuple
(s1,s2). In practice, choosing two segments for a segment boundary location and ordering
them is not straightforward (e.g. a location on T-junction where there are more than two
segments nearby). We put technical details about segment pairs in Section 3.3.

3.1 Score Function

In this section we describe the score function for each graphical model, which is the sum of
unary potentials defined at the graph nodes, representing the landmarks, and binary potentials
defined over the edges connecting neighboring landmarks.

We first define the variables of the graph. Each node has pixel position of landmark
li = (xi,yi). The set of all positions is denoted by L = {li}|V|i=1. We denote by pi the indicator
specifying which part landmark i belongs to, and by h(p) the segmentation level of part
p. Then the segment pair of node i, si, can be seen as the function of h(pi), which we
denote by si,h for simplicity. Similar to the definitions of L, we have H = {h(pi)}N

i=1 and
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Figure 5: The landmark annotations for typical images. Yellow dots are the annotated land-
mark locations. Please refer to Section 3.3 for landmark selection criteria.

S(H) = {si,h}
|V|
i=1. The score function of the model for viewpoint v is

S(L,H,v | I) = φ(L,H,v | I)+ψ(L,H,v | I)+βv (1)

In the following we omit v for simplicity. The unary terms φ(L,H | I) is expressed as:

φ(L,H | I) = ∑
i∈V

[
w f

i · f (li | I)+we
i e(h(pi), li | I)

]
(2)

The first term in the bracket of Equation 2 measures the appearance evidence for landmark
i at location li. We write f (li | I) for the HOG feature vector extracted from li in image
I. In the second term, the term e(h(pi), li | I) is equal to one minus the distance between
li and the closest segment boundary at segmentation level h(pi). This function penalizes
landmarks being far from edges. The unary terms encourage locations with distinctive local
appearances and with segment boundaries nearby to be identified as landmarks. The binary
term ψ(L,H | I) is:

ψ(L,H | I) = ∑
(i, j)∈E

wd
i, j ·d(li, l j)+ ∑

(i, j)∈E
pi=p j

wA
i, j ·A(si,h,s j,h | I) (3)

d(li, l j) = (−|xi − x j − x̄i j|,−|yi − y j − ȳi j|) measures the deformation cost for connected
pairs of landmarks, where x̄i j and ȳi j are the anchor (mean) displacement of landmark i and
j. We adopt L1 norm to enhance our model’s robustness to deformation. In the second term
of Equation 3, A(si,h,s j,h | I) = (α(s1

i,h,s
1
j,h | I),α(s1

i,h,s
2
j,h | I),α(s2

i,h,s
1
j,h | I),α(s2

i,h,s
2
j,h | I))

is a vector storing the pairwise similarity between segments of nodes i and j. This, together
with the strength term wA

i j, models the SAC. The computation of α(si,h,s j,h | I) is given in
Section 3.3. Finally, β is a mixture-specific scalar bias.

The parameters of the score function areW = {w f
i }∪{we

i }∪{wd
i j}∪{wA

i j}∪{β}. Note
that the score function is linear inW , therefore similar to [9] we can express the model more
simply by

S(L,H | I) = w ·Φ(L,H | I) (4)

where w is formed by concatenating the parametersW into a vector.
Special case Without the second term in the bracket of Equation (2) and the second term of
Equation (3) (i.e. setting we

i = 0 and wA
i, j = 0), the model is equivalent to [30], which we will

compare our performance with.

3.2 Inference and Learning
Inference. The viewpoint v, the positions of the landmarks L and the segmentation levels
H are unobserved. Our model detects the landmarks and searches for the optimal viewpoint
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gp# gp# gp# gp# gp#

gp# gp# gp# gp# gp#

p# gp#

gp# gp# gp#
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Figure 6: Illustration of segment pair assignment. Right: The look-up table for segment pair
assignment, which is divided into two parts (separated by the dashed line). White represents
1 and black represents 0. Left: an example of how to construct the binary matrix m(p) for
location p and how to determine its segment pair. The hit of m(p) in the look-up table is
marked by the red rectangle. Best view in color.

and segmentation levels of parts simultaneously, as expressed by the following equation,

S(I) = max
v

[max
H,L

S(L,H,v | I)] (5)

The outer maximizing is done by enumerating all mixtures. Within each mixture, we ap-
ply dynamic programming to estimate the segmentation levels and landmark positions of
parts. Then the silhouette of each part can be directly inferred from its landmarks. In our
experiment, it took a half to one minute to do the inference on an image about 300-pixel
height.
Learning. We learn the model parameters by training our method for car detection (this is
simpler than training it for part segmentation). We use a set of image windows as training
data, where windows containing cars are labeled as positive examples and windows not
containing cars are negative examples. A loss function is specified as:

J (w) =
1
2
‖w‖2 +C∑

i
max(0,1− ti ·max

Li,Hi
w ·Φ(Li,Hi | Ii)) (6)

where ti ∈ {1,−1} is the class label of the object in the training image and C is a constant.
Let’s take a closer look at the inner maximization. The segmentation levels of the semantic
parts H are hidden and need to be estimated. The CCCP algorithm [27] is used to estimate the
parameters by minimizing the loss function through alternating inference and optimization.

3.3 Implementation Details
Landmarks. The landmarks are specified manually for each viewpoint. They are required
to lie on the boundaries between the car and background (contour landmarks) or between
parts (inner landmarks), so that the silhouettes of parts and the car itself can be identified
from landmarks. For front/back view, we use 69 landmarks; for left and right side views, we
use 74 landmarks; for the other views, we use 88 landmarks. The assignment of landmarks
to parts is determined by the following rule: contour landmarks are assigned to parts they
belong to (e.g. landmarks of the lower half of wheels), and inner landmarks are assigned to
parts that they are surrounding (e.g. landmarks around license plates). See Figure 5 for some
examples. It took about two minutes to label one image.
Appearance features at landmarks. The appearance features f at the landmarks are HOG
features. More specifically, we calculate the HOG descriptor of an image patch centered at
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(a) PASCAL VOC 2010
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(b) CAR3D

Figure 7: Cumulative localization error distribution for parts. X-axis is the average local-
ization error normalized by image width, and Y-axis is the fraction of the number of testing
images. The red solid lines are the performance using SAC and the blue dashed lines are the
performance of [30].

the landmark. The patch size is determined by the 80% percentile of the distances between
neighboring landmarks in training images.
Appearance similarity between segments. The similarity α(·, ·) is a two dimensional vec-
tor, whose components are the χ2 distances of two types of features of the segments: color
histograms and the grey-level co-occurrence matrices (GLCM) [12]. The color histograms
are computed in the HSV space. They have 96 bins, 12 bins in the hue plane and 8 bins in
the saturation plane. The GLCM is computed as follows: We choose 8 measurements of the
co-occurrence matrix, including HOM, ASM, MAX and means (variances and covariance)
of x and y (please refer to [12] for details); The GLCM feature is computed in the R, G and
B channels in 4 directions (0, 45, 90, 135 degrees); As a result, the final feature length is 96
(8 measurements × 3 channels × 4 directions).
Segment pair assignment. To determine the segment pairs for locations on boundaries, we
build a look-up table which consists of 32 3-by-3 binary matrices, as shown in the right of
Figure 6. At each boundary location p we construct a 3-by-3 binary matrix m(p) according to
the segmentation pattern of its 3-by-3 neighborhood: locations covered by the same segment
as p’s are given value 1 and other locations are given value 0. We denote the segment which
p belongs to by gp, and the segment which most 0-valued locations in m belong to by ḡp.
See the left part of Figure 6 for an example. The green yellow rectangle marks the 3-by-3
neighborhood with p in the center. The bronze segment is gp and the cyan segment is ḡp.
According to the above rule, within the 3-by-3 neighborhhod, the bronze region is given
value 1, and the rest (cyan and purple regions) is given value 0. Then we search for m(p) in
the look-up table. If m(p) matches to one of the upper 16 matrices, gp will be s1 and ḡp be
s2 of p; If it matches to one of the lower 16 matrices, ḡp will be s1 and gp be s2 of p. In the
right of figure 6, we mark the hit of the matrix m(p) in the look-up table with a red rectangle.
To assign segment pair to a location p not on edge, we obtain the closest edge location q and
assign q’s segment pair to p.
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Figure 8: Cumulative segmentation error distribution for parts. X-axis is the average seg-
mentation error normalized by image width, and Y-axis is the fraction of the number of
testing images. The red solid lines are the performance using SAC and the blue dashed lines
are the performance of [30].

4 Experiments

4.1 Dataset

We validate our approach on two datasets, PASCAL VOC 2010 (VOC10) [6] and 3D car
(CAR3D) [20]. VOC10 is a hard dataset because the variations of the cars (e.g, appearance
and shape) are very large. From VOC10, we choose car images whose sizes are greater than
80×80. This ensures that the semantic parts are big enough for inference and learning. Cur-
rently our method cannot handle occlusion, so we remove images where cars are occluded
by other objects or truncated by image border. We augment the image set by flipping the
cars in the horizontal direction. This yields a dataset containing 508 cars. Then we divide
images into seven viewpoints spanning over 180◦ spacing at 30◦. CAR3D provides 960 non-
occluded cars. We also divide them into seven viewpoints (instead of using the original eight
viewpoints). We collect 300 negatives images by randomly sampling from non-car images
of PASCAL VOC 2010 using windows of the sizes of training images. These 300 negative
images are used for both datasets. In our experiments, for each dataset, we randomly select
half of the images as training data and test the trained model on the other half.

4.2 Baseline

We compare our method with the model proposed by Zhu and Ramanan [30] on landmark
localization and semantic part segmentation. We simply use their code to localize landmarks
and assume the regions surrounded by certain landmarks are the semantic parts. Note that
we use the same landmark and part definitions for both the baseline and our methods.
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Figure 9: Visualized comparison of our method with [30] on car part segmentation. In each
pair of results, the lower one is produced by our method.

Figure 10: More segmentation results of our method on VOC10 (upper) and CAR3D (lower).

4.3 Evaluation

We first evaluate our method on landmark localization. We normalize the localization error
as Zhu and Ramanan did in [30]. In this and the following experiments, we consider parts
of same category as a single part (e.g. two lights of a front-view car are treated as one part).
Figure 7 shows the cumulative error distribution curves on both datasets. We can see that
by using SAC we had a big improvement of the landmark localization performance of all
semantic parts on VOC10. We achieved better or comparable performance on CAR3D.
Images in CAR3D are relatively easier than those in VOC10 and therefore SAC cannot bring
big performance gain.

Then we evaluate our method on semantic part segmentation. The segmentation error of
a part is computed by (1− IOU), where IOU is the intersection of detected segments and
ground truth segments over the union of them. Figure 8 shows the cumulative error distri-
bution curves on both datasets. Again, using SAC our method improves the performance
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on almost all parts (improvement on lights and license plate is significant). However, we
got slightly worse result on wheels. The errors occurred when SWA produces segments that
are crossing the boundaries of wheels and the nearby background at all levels. The reason
is that due to illumination and shading, it is difficult to separate wheels and background by
appearance.

Figure 9 shows the visualization comparison, from which we can see that our method
works better on part boundaries, especially for lights and license plates. Figure 10 shows
more segmentation results on VOC10 and CAR3D.

5 Conclusion
In this paper, we address the novel task of car parsing, which includes obtaining the positions
and the silhouettes of the semantic parts (e.g., windows, lights and license plates). We pro-
pose a novel graphical model which integrates the SAC coupling terms between neighboring
landmarks, including using hidden variables to specify the segmentation level for each part.
This allows us to exploit the appearance similarity of segments within different parts of the
car. The experimental results on two datasets demonstrate the advances of using segment
appearance cues. Currently, the model cannot handle large occlusion and truncation, which
is our future direction.
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