
DE ROSA, CESA-BIANCHI, GORI, CUZZOLIN: ONLINE ACTION RECOGNITION 1

Online Action Recognition via
Nonparametric Incremental Learning

Rocco De Rosa
rocco.derosa@unimi.it

Dipartimento di Matematica
Università degli Studi di Milano, Italy

Nicolò Cesa-Bianchi
nicolo.cesa-bianchi@unimi.it

Dipartimento di Informatica
Università degli Studi di Milano, Italy

Ilaria Gori
ilaria.gori@iit.it

iCub Facility
Istituto Italiano di Tecnologia, Italy

Fabio Cuzzolin
fabio.cuzzolin@brookes.ac.uk

Dept. of Comp. and Comm. Tech.
Oxford Brookes University, UK

Abstract

We introduce an online action recognition system that can be combined with any set
of frame-by-frame feature descriptors. Our system covers the frame feature space with
classifiers whose distribution adapts to the hardness of locally approximating the Bayes
optimal classifier. An efficient nearest neighbour search is used to find and combine the
local classifiers that are closest to the frames of a new video to be classified. The ad-
vantages of our approach are: incremental training, frame by frame real-time prediction,
nonparametric predictive modelling, video segmentation for continuous action recogni-
tion, no need to trim videos to equal lengths and only one tuning parameter (which,
for large datasets, can be safely set to the diameter of the feature space). Experiments
on standard benchmarks show that our system is competitive with state-of-the-art non-
incremental and incremental baselines.

keywords: action recognition, incremental learning, continuous action recognition,
nonparametric model, real time, multivariate time series classification, temporal classifi-
cation

1 Introduction
Action recognition has been attracting increasing interest in the last decade, due its role
in a variety of applications involving the natural interaction between people and electronic
devices, patient monitoring systems, and surveillance systems, to cite a few. The main chal-
lenge is designing general purpose algorithms that work reasonably well across these many
different scenarios. Recently, a number algorithms for gesture, action, and activity recogni-
tion were proposed in the literature; we refer the reader to [2] for a rather extensive survey on
the topic. Typical approaches to the problem are based on a two-stage procedure: First, dis-
criminative features [48] are extracted from image sequences either locally (frame by frame)
or globally, and then collected in a training set. Second, a classifier (e.g., k-NN, SVM, deci-
sion tree) is learned from the training set and used to categorize new videos. These methods
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typically employ a batch learning strategy: the classifier is the outcome of some global op-
timization process applied to the training set. If new training data become available, the
system needs to be re-trained from scratch.
Online and incremental action recognition. Batch learning cannot really be applied to
a number of important real-world applications, because of the sheer amount of training
data, and the fact that training data is collected in an inherently sequential fashion. Ap-
plications in which this constraint holds include: large scale datasets [15], surveillance
systems [20, 24, 32], disease recognition [13, 40], human-computer interaction [27, 42],
human-robot interaction [12, 16] and robot cooperation [10]. For instance, performing a
global optimization training procedure on a large scale dataset might be prohibitive. In other
scenarios, such as surveillance systems, incremental learning is needed to quickly process
new training examples without having to re-train from scratch. In an incremental setting
global video features cannot be used, as the training data are not available as a collection
of pre-segmented videos. The use of local features, extracted frame by frame, becomes
thus mandatory. Different descriptors of this type exist, such as HOOF [8], 3DHOF [19],
HOG [9], PHOG [7], and HON4D [37].
State of the art on incremental learning. Incremental algorithms, which update the learned
model sequentially, have been already used in computer vision problems. Examples include
face recognition [38], object tracking [23] and detection [45], gait recognition [21], visual
tracking [29], and robot cooperation [10]. Nevertheless, such methods generally adapt exist-
ing incremental machine learning algorithms designed for “static” data to work with features
extracted from videos, ignoring the dynamics of the frame sequence. For instance, [33, 51]
apply incremental SVM or incremental discriminant analysis (respectively) to global video
features. The authors of [35] manipulate a global descriptor based on snippets [43] to make it
more efficient for real-time applications, and then use a recursive Extreme Learning Machine
(ELM) for incremental learning.
Proposed methodology. We propose here a general framework for incremental video clas-
sification based on the following principles: (i) each video frame is a training example in
a local feature space; (ii) incoming training examples are selected to cover the frame fea-
ture space with balls whose radius is adjusted according to the distribution of action classes
within each ball; (iii) each ball is associated with an estimate of the conditional class proba-
bilities, obtained by collecting statistics around its centre, which is used to make predictions
on new unlabeled samples; (iv) the set of balls can be organized in a tree structure [26],
allowing logarithmic queries in the number of balls. During training, a new ball is added
whenever the input frame example does not belong to the ball whose center is the closest to
the frame among the centers in the current set. Otherwise, the ball statistics and its radius
are updated. In the prediction phase, the conditional class probability estimates associated
with the ball centre nearest to the input frames are used to select the action that maximises
the sum of those scores. The method allows us to work incrementally at frame level and in
real time. Our learning method is also nonparametric. That is, the classifier structure is not
pre-determined (as for linear classifiers), but it is inferred from the data (as for k-NN). To the
best of our knowledge no other approach enjoys all these attractive features.
Application to online action recognition. As it handles videos on a frame-by-frame basis,
the method is suitable to tackle the so-called “continuous action recognition” problem [3,
4, 18, 36, 46, 52], in which both training and test videos contain a number of gestures in a
sequence. Temporal segmentation is then paramount to cut video streams into single action
instances, consistent with the models learnt from the training sequences. We show how our
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method can be easily combined with the robust temporal segmentation algorithm presented
in [12].

Contributions and outline. In summary, (i) we propose a novel algorithm for online non-
parametric recognition built upon a recent nonparametric regression method [25]; (ii) we ap-
ply our algorithm to incremental action recognition, demonstrating competitive performance
on a significant set of benchmarks; (iii) we outline an online recognition method, able to
automatically segment and recognise actions in real time. The paper is organized as follows.
In Section 3 we introduce our online recognition framework and the training and prediction
algorithms. The algorithm is validated on both batch and incremental action recognition in
Section 4. In Section 5 we propose an online action segmentation and recognition setup
based on our nonparametric approach. Section 6 concludes the paper.

2 Related work

The approach closest to the one proposed here is [41]. There, the authors use an incremental
“feature-tree” for indexing local spatio-temporal features extracted from cuboids [11] within
labelled videos, and then associate each feature with the video label. In the recognition
stage, local features are first detected and extracted. Then, for each feature a query is made
on the feature-tree, which returns a set of nearest neighbour features and their corresponding
labels. The video is assigned to the label that receives the highest number of votes from its
neighbourhood. Although this method appears rather similar to ours, there are considerable
differences. First, the authors use an unsupervised partition of the (local) feature space.
The cover constructed by our approach, instead, adapts to the local label distribution. This
generates partitions which are more discriminative than those produces by classical k-NN
in which, additionally, finding the ’true’ value of k is generally difficult. Furthermore, their
method stores all training data, whereas our algorithm stores a considerably smaller number
of ball centres —see Figure 2. Finally, our approach associates with each frame a class score,
which is generally more informative than majority voting. For instance, if two actions share
some common sub-actions, under [41] the “wrong” action may receive the majority of votes
for a number of frames. With our method, on the other hand, those frames will assign a lower
score to the true action, but this score may eventually be highly influential in determining
the final decision when compared against all the other action scores. The work [41] deals
also with simultaneous multiple action recognition, by assigning a label to each cuboid and
detecting the parts of the videos where an action of interest is performed. Our method can
be also adapted to multiple action recognition by managing individual cuboids as sequences
of video frames in their own right.

We did not include the method developed by [41] in our set of baselines, because the
computational cost of feature extraction is substantially higher than that of the other methods
considered in this work. A more extensive comparison of the time vs. accuracy trade-offs in
this context are left to future work.

Note that our approach is only superficially similar to kernel-based classification. This
latter technique predicts with a weighted combination of kernels, where the kernel parameter
is typically chosen via cross-validation. Our approach, instead, uses only the nearest ball
centre to predict, and reduces the ball radius proportionally to the number of mistakes made
by the ball centre classifier. As explained in [25], this reduction is key to prove convergence
to the Bayes optimal classifier.
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3 Learning framework
We consider a model in which the learner is trained on a sequence (V 1,y1),(V 2,y2), . . . of
labeled videos. Video V i contains Ti frames v(i)1 , . . . ,v(i)j , . . . ,v(i)Ti

, where each frame v(i)j ∈RD

is represented by D features (see Datasets in Section 4 for a description of the features used
in this work). The video is annotated with a label yi denoting an action from a given set
Y = {1, . . . ,C} of possible actions. The learner’s task is to build a classifier, mapping each
new video to its correct label. We focus on an incremental learning setting, in which the
classifier is trained incrementally (via small adjustments to the current model) every time a
new labeled video (or labeled frame) is presented to the learner. We adopt a frame based
classification approach, but at the same time we take into account the temporal extent of
the actions applying a temporal difference encoding to the video frames. For each video
V i and for each frame index j = 1, . . . ,Ti− 1 of V i, the j-th frame v(i)j ∈ RD is encoded as

x(i)j =
(
v(i)j+1,v

(i)
j+1− v(i)j

)
∈ R2D. Hence, each labeled video (V i,yi) generates Ti−1 labeled

frames
(
x(i)j ,yi

)
for j = 1, . . . ,Ti−1.

In what follows, we drop the superscripts i and re-index the frames, thus assuming that
the learner is fed a sequence (x1,y1),(x2,y2), · · · ∈ R2D×Y of labeled frames (i.e., train-
ing examples), where each (xt ,yt) =

(
x(i)j ,yi

)
for some i and 1 ≤ j < Ti. Our classification

framework is based on a recently developed nonparametric regression method suitable for
streaming data [25]; according to this algorithm, the frame feature space is adaptively cov-
ered by a set S of balls, as a function of the distribution of the data points in the feature space
and of the empirical class distributions in each ball. Each new data point xt is classified using
the prediction provided by the nearest ball centre xπ(t) in S (where π(t) denotes the index of
the element of S that is closest to xt ). In the following, we describe the incremental training
procedure which defines the set S and the way ball predictions are computed.

Training. The sequence of observed training examples, obtained via the temporal difference
encoding of the incoming videos, is used to build a set S of balls covering the region of the
feature space spanned by the examples. For each ball, an empirical distribution of classes is
maintained. The radii of the balls are adjusted to account for mistakes in predicting the class
of the training examples. A ball is added only when a new sample does not fall within the
nearest existing ball. For each ball center xs ∈ S we keep updated counts ns(c) of the number
of data points xt of class c ∈ Y that at time t belonged to the ball centered on xs (remember
that the ball’s radius changes over time). These counts are used to compute Laplace-adjusted
class probability estimates for each ball center xs ∈ S:

ps(c) =
ns(c)+1

ns +C
c = 1, . . . ,C (1)

where ns = ns(1)+ · · ·+ns(C).
More specifically, the training algorithm operates as follows —see Algorithm 1. (i) Ini-

tially, the set of balls S is empty. (ii) For each training example xt , we efficiently compute
the nearest neighbour xπ(t) ∈ S, according to a given metric ρ . Note that there exist data
structures that allow an efficient management of the set S of ball centers. For example, [26]
embeds S in a tree where nearest neighbour queries and updates can be performed in time
O(ln |S|) —see also [25]. (iii) If xt does not belong to the nearest neighbour xπ(t) ∈ S , a
new ball of radius εt = R > 0 centered on it is created and added to S; its label yt is used to
initialize the empirical class distribution for the new ball via (1). (iv) Otherwise, the label yt
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of the current example is used to update the mistake counts mπ(t) of the closest ball. The ball
center xπ(t) makes a mistake on (xt ,yt) if and only if yt 6= argmax

c∈Y
pπ(t)(c). (v) Whenever the

ball center xπ(t) ∈ S makes a wrong prediction, the radius επ(t) is shrunk by an amount that
depends inversely on an estimates of the “intrinsic dimension”1 d of the stream data, as a
function of the number of prediction mistakes made so far: επ(t) = Rm−1/(d+2)

π(t) . (vi) Finally,
the class probability estimates pπ(t)(c) for the ball center xπ(t) are updated via (1). Prelim-
inary knowledge of the full set of action classes Y is not needed: our incremental learning
approach can add new labels to Y as soon as they first appear in the video sequence.

Algorithm 1 ABACOC (Adaptive Ball Cover for Classification)
Input: Initial radius R > 0, metric ρ

1: Initialize set of ball centers S = /0 and set of labels Y = /0
2: for i = 1,2, . . . do
3: Get labeled video (V i,yi) and create frame sequence (x1,yi), . . . ,(xTi−1,yi) using tem-

poral difference encoding
4: if yi /∈ Y then
5: Set Y = Y ∪{yi}
6: end if
7: for t = 1, . . . ,Ti−1 do
8: if S ≡ /0 then
9: S = {xt}, set radius εt = R, and use yi to initialize estimates pt via (1)

10: else
11: Let xs ∈ S be the nearest neighbour of xt in S
12: if ρ

(
xs,xt)≤ εs (xt belongs to current ball centered on xs) then

13: if yi 6= argmax
c∈Y

ps(c) then

14: Set ms = ms +1 and update radius via εs = Rm−1/(2+d)
s

15: end if
16: Use yi to update estimates ps via (1)
17: else
18: S = S ∪{xt}, set radius εt = R, and use yi to initialize estimates pt
19: end if
20: end if
21: end for
22: end for

Prediction. In the prediction phase, we proceed similarly: the video V i is used to generate
the Ti − 1 frames x1, . . . ,xTi−1 via temporal difference encoding. For each xt the nearest
neighbour xπ(t) ∈ S is computed. Then, the label of the test video V i is predicted using the
following maximum likelihood estimate, which integrates over all the frames of the video:

ŷi = argmax
c∈Y

Ti−1

∑
t=1

ln pπ(t)(c) . (2)

In the regression setting proposed in [25], all ball radii εs shrink uniformly with time t at
1This roughly corresponds to the smallest number of dimensions in which the stream can be embedded without

significantly increasing the Bayes error.
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rate t−1/(d+2), where d is the unknown intrinsic dimension of the space (which can be much
smaller than the ambient dimension D, i.e., the number of features in our case). Under
Lipschitz assumptions on the true regression function, the method in [25] was shown to
be consistent2, with a nearly optimal nonparametric convergence rate. In this work, besides
replacing the regression estimate associated with each ball center with a maximum likelihood
estimate (more appropriate for classification), we let the radius of each ball shrink at a rate
dependent on the number of mistakes made by the estimator associated with the ball center.
This leads to a model where many small balls are used to cover only regions with high
mistake rates (where the Bayes optimal classifier is supposedly more complex), whereas
low mistake rate regions get covered with a few large balls —see Figure 1. Establishing
sufficient conditions on the stream under which the consistency of our classification approach
is guaranteed is currently work in progress.

Figure 1: Left: the set of balls resulting from training on the first two principal components
of local features extracted from the KTH dataset (colours denote labels, and color intensity
expresses the ’purity’ of the conditional class distribution within each ball). Right: a close-
up of the central area represented as the Voronoi tessellation associated with the balls shows
how the regions whose class statistics are more complex are covered by a finer set of balls.

4 Experiments
Batch and online settings. In this section we describe the baselines, the feature descriptors,
and the datasets used in the experiments. To emphasize the versatility of our approach, we
test the empirical performance of ABACOC in two learning settings: batch and online. In
the batch setting, we follow the literature for each specific dataset, using available train-test
splits, leave-one-out, or k-fold cross-validation (see below for details). The online setting is
geared at an actual real-time scenario; in this case we are interested in the average perfor-
mance in time of the sequence of models generated by ABACOC. Note that, in the online
setting we do not measure the performance of a single classifier, but rather the performance

2A consistent classifier is one for which the probability of correct classification, given a training set, approaches,
as the size of the training set increases, the best probability theoretically possible (Bayes optimal) if the population
distributions were fully known.

Citation
Citation
{Kpotufe and Orabona} 2013



DE ROSA, CESA-BIANCHI, GORI, CUZZOLIN: ONLINE ACTION RECOGNITION 7

of the ensemble of classifiers generated by the incremental training process, see below for
details.

Datasets. We assessed our method on some of the most common computer vision bench-
marks: Weizmann [17] and KTH [44] (all scenarios) for action recognition, SKIG [30] and
MSRGesture3D [50] for gesture recognition, JAPVOW [34] and AUSLAN [22] for sign
language recognition (UCI Repository [1]). The first four datasets are mostly footage mate-
rial, which requires a feature extraction step at the frame level. Our approach for KTH and
Weizmann datasets is based on the histogram of oriented optical flows (HOOF) [8] using
32 bins. For the dataset SKIG we used the same feature extraction pipeline of [12], which
consists of 3DHOF on the RBG frames and GHOG (Global Histogram of Oriented Gradient)
on the depth frames. For MSRGesture3D only depth information is available. We therefore
extracted two-level pyramidal HOG (PHOG) features using 32 bins.

Competing approaches. Our baselines for batch experiments include Hidden Markov Mod-
els (HMM), Dynamic Time Warping (DTW), and Support Vector Machines (SVM). The
standard technique using HMMs for classifying video sequences outputs the action asso-
ciated with the trained HMM that achieves the highest likelihood score on the new frame
sequence. We call this approach HMM-Lik —see, e.g., [5, 39]3 Recently, Antonucci et
al. [6] proposed a method using instead the expected value w.r.t. the stationary distribution
to calculate, from each HMM, a “static” feature that then gets processed via a standard ma-
chine learning classifier. As we used a 1-NN technique, this method will be here referred to
HMM-1NN. Another baseline, which we refer to as DTW-d, consists in assigning to the new
video the action of his nearest training sequence based on the DTW distance [49]. Fanello et
al. [12] proposed a real-time prediction system based on one-vs-all SVMs learned on samples
generated from a concatenation of a set of feature frames collected from a sliding window.
We term this method SVM-b. For HMM-Lik and HMM-1NN we used the same setting as
in [6], characterized by Gaussian HMMs with N = 3 hidden states. For SVM-b we selected
a buffer of 12 frames for all datasets, except for the AUSLAN dataset on which a buffer of
size 8 empirically leads to better results.

In the online setting, we compared our approach against SVM-b with a full re-train after
the presentation of each new video and the kernel-based binary classifier ALMA [14]. Simi-
larly to ABACOC, ALMA is trained incrementally. However, the learned classifier is linear,
and provably approximates the SVM classifier. In order to provide a fair comparison against
a nonparametric approach, we ran ALMA with a Gaussian kernel (since SVM with Gaussian
kernels is known to be consistent —see [47]). ALMA’s parameters were optimally tuned on
the full dataset. As for ABACOC we used the Euclidean distance as metric ρ (other metrics
could be considered for specific feature descriptors). Since feature vectors are normalized,
the parameter R was set to a value smaller than 1. In most cases, this parameter can be safely
set to the diameter of the feature space. Nonetheless, when the dataset is small, lower values
may provide better results. In order to compute the intrinsic dimension parameter d of the
space, which controls the shrinking rate of the radii, we used the method described in [31].

Results on batch classification. We used leave-one-out for KTH and Weizmann, a 3-fold
cross-validation averaged on ten runs for SKIG, the same setting as [50] (i.e., a five-person
test) for MSRGesture3D, and the already available training and test sets for JAPVOW and
AUSLAN. As shown in Table 1, ABACOC is always among the best two methods on all
datasets. This suggests that our algorithm, combined with state-of-the-art features, provides

3The better performances in [5] are due to aggressive feature selection which we did not use in this work
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DATASET HMM-Lik HMM-1NN DTW-d SVM-b ABACOC
KTH 49.92% 68.28% 52.50% 69.83% 83.20%

Weizmann 47.80% 87.50% 53.76% 97.22% 98.61%
SKIG 16.40% 90.30% 95.74% 94.50% 97.50%

MSRGesture3D 17.4% 78.20% 50.65% 95.55% 90.33%
JAPVOW 86.65% 95.67% 69.72% 84.59% 98.01%
AUSLAN 19.74% 67.07% 83.81% 44.78% 72.32%

Table 1: Multiclass accuracies of ABACOC compared against four baseline algorithms on
the six benchmark datasets. All the methods share the same extracted features.

an accurate and efficient classification system across the board, even in a batch setting.

200 400

0.4

0.6

(a) KTH

20 40 60

0.4

0.5

0.6

0.7

(b) WEIZ

100 200 300
0.2

0.4

0.6

0.8

(c) MSR

200 400 600

0.4

0.6

0.8

(d) JAPVOW

500 1,000

0.4

0.6

0.8

(e) SKIG

200 400
0

0.2

0.4

0.6

(f) AUSLAN

KTH WEIZ MSR JAP SKIG AUS
0

0.2

0.4

0.6

0.8

1

(g) Fraction Selected Frames

Figure 2: The plots a to f show the online performance of ABACOC (red solid line) against
SVM-b (green dashed line) and ALMA (blue dotted line). The x-axis is the number of videos
fed to the algorithms and the y-axis is the average accuracy over the ten random permuta-
tions. The plot g shows the fraction of frames selected by ABACOC as ball centers (red
bars) and the fraction of frames chosen as support vectors selected by ALMA (blue bars).
ABACOC consistently uses less training examples than ALMA to represent its classifier.

Results on incremental classification. We constructed ten random permutations of the
videos in each dataset (only the first 500 videos of AUSLAN were selected because retraining
SVM-b is computationally expensive). Then, we fed the videos to the algorithms one by one,
in the order specified by the random permutation —see Algorithm 2.

The algorithms had to predict the label of each new incoming video. After each predic-
tion, the video together with its label were given to each algorithm as a new training example.
SVM-b was re-trained on all past examples including the new one. ABACOC and ALMA
instead, perform an incremental training step (lines 3–19 of Algorithm 1 for ABACOC). The
plots in Fig. 2 track the average accuracy of the predictions of each algorithm on increasing
prefixes of the random permutation. For ABACOC and ALMA we also plot the fraction
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Algorithm 2 Online protocol
Input: Video stream (V 1,y1),(V 2,y2), . . .

1: for t = 1,2, . . . do
2: Receive V t
3: Predict ŷt
4: Receive true action yt
5: Update model fed new example (V t ,yt)
6: end for

of frames selected, respectively, as centers and support vectors (plot g) as the permutation is
fed to each algorithm. Notably, besides being computationally very demanding, SVM-b with
re-train has an online performance that is not consistent across the different datasets. ALMA
is never significantly better than ABACOC. Moreover, whereas prediction and incremental
training of ABACOC are logarithmic in the number of balls, ALMA with kernels predicts
and updates its linear model in time linear in the number of support vectors. Finally, whereas
ABACOC is naturally multiclass, SVM-b and ALMA require costly one-vs-all reductions to
deal with multiclass datasets.

5 Continuous action recognition
The training and prediction phases of our framework can be combined to obtain a truly online
system, provided we endow the system with a method able to determine when a new training
label is needed, for instance by assessing the confidence level of each classification. Think
of a scenario in which a robot recognizes gestures made by humans. Whenever a gesture is
classified with low confidence, the robot can query the human and obtain the correct label,
which is then used for training. In this scenario the goal could be to minimize the robot’s
error rate given an admissible query rate.

Our method computes, for each frame, a score over the possible actions, see (2). This al-
lows to analyse the evolution of the action probabilities over time, and segment a continuous
sequence of multiple actions by detecting the beginning and the end of an individual action.
We do that by using the algorithm presented in [12], which uses SVMs to assign scores. The
rationale of the approach is that the standard deviation of the scores is informative. When at
a given time a score is clearly higher than the others, the standard deviation is also high, and
this is used as an indicator that some specific action is being performed. In contrast, when
all scores are similar the standard deviation is low (see Fig. 3, blue dots), and this indicates
the onset of a new action —see [12, Section 4.3.2] for details. We apply this method to
the scores computed by ABACOC obtaining the pink line in Figure 3. Notably, the peaks
of the curve correspond to actions being performed, while the minima represent transitions
between actions. We isolate these points by computing the mean of the standard deviation
over a small buffer of frames (Figure 3, cyan line). We refer again the reader to [12] for the
details.

We tested our “spotting” approach on a home-made dataset of ten manipulative actions.
These include different grasping actions, in which the whole hand or only the fingertips
are used, release actions, where the fingers are opened, and motion actions, where the arm
performs a right or a left movement. Each action was recorded 60 times in two different
illumination settings and backgrounds, and 3DHOF and HOG descriptors were extracted
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Figure 3: The evolution of the action probabilities over time for one of the test sequences
containing 3 actions is depicted on the left. On the right, the pink line represents the standard
deviation of the action probabilities for each frame, and the cyan line is the mean of the
standard deviation computed over a small buffer of frames.

for each frame. We evaluated our algorithm on sequences representing pick and place ac-
tivities, formed by a grasping action, a moving action and a releasing action. In order to
compute the accuracy between a ground truth sequence and the estimated one, we employed
the Levenshtein distance [28], defined as S+D+I

N . There, each action is treated as a symbol
in a sequence; S represents the number of substitutions (misclassifications), D the number
of deletions (false negatives) and I the number of insertions (false positives). Over 20 test
sequences, the Levenshtein distance error was 0.12 for the SVM-b classifier and 0.08 for the
one proposed here.

6 Conclusions and perspectives
This study has shown an efficient incremental nonparametric prediction system that can be
combined with any set of frame-by-frame local feature descriptors for online action recog-
nition. We showed the effectiveness of our approach in different scenarios, when compared
to standard baselines methods. In order to test the real-time abilities of our system we have
installed it in the RoboThespian4 with features extracted from Kinect. We have published
the code to encourage a widespread adoption of our framework5. Further research will focus
on finding a confidence measure for the prediction scores, which could be used in a semi-
supervised framework, for instance in human-robot interaction scenarios in which a robot
can query the human to obtain the correct label whenever a gesture is classified with low
confidence.

4www.robothespian.co.uk
5https://mloss.org/software/view/560/
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