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Abstract

Modern computer vision applications are built on processing pipelines with hard and
intensive tasks; among those, figure-ground segmentation is definitely one of the most
important and challenging. As proved by many works in literature, an effective way
of approaching this task consists in combining different algorithms in structures where
they collaborate towards the solution of the given segmentation problems. Inspired by
other model combination frameworks, we propose a novel method to create tree-based
ensembles of randomly configured figure-ground segmentation algorithms. The tree-
based topology enables the algorithms to communicate with each other to let the strengths
of one overcome the weaknesses of the others and vice versa, while the randomness
injection reduces the risk of overfitting, decreases the computational complexity of the
model creation procedure and enables our ensembles to overcome state-of-the-art results
for several challenging datasets.

1 Introduction

Many works in literature have proved that one of the most effective method of dealing with
the task of figure-ground segmentation [26] consists in combining different segmentation
algorithms together [11, 19, 38]. For example, boosting procedures to automatically build
a set of weak classifiers [12, 29] have been successfully used as underlying learning tech-
nique for addressing different object identification and segmentation tasks [33, 37]. Excel-
lent results were also obtained by employing other model combination methods, such as
cascaded classifier models [16], bayesian model averaging [17], greedy trees, multiple ker-
nels [34], cascade of boosted ensembles [28, 32, 35], parallel strong learners [1] or decision
forests [8, 14, 15, 30] to name a few.

Several among these model combination frameworks adopt rejection rules to improve
the classification time of the ensembles at the cost of reducing the interactions between dif-
ferent elements in the structures; however, as proved by CCM [16], when execution time
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is not critical, a joint approach that focuses on interaction between classifiers can be ex-
tremely effective. While CCM focuses on combining algorithms for solving different tasks
(object detection, region labeling, geometric reasoning, etc), a similar approach could lead to
good results even when combining algorithms for solving a single task. In fact, considering
the task of figure-ground segmentation, even though different segmentation algorithms may
obtain similar overall results for a given dataset, they may commit substantially different pre-
diction errors for the same set of given samples [19], therefore good results can be expected
when appropriately combining those algorithms together.

Following this idea, we propose a novel model combination framework for combining a
set of figure-ground segmentation algorithms into dynamically built High Entropy Ensem-
bles (HEE) whose creation phases are guided by the maximization of a goodness function.
Our method is fully automatic and requires no user input. Unlike most of the model com-
bination approaches proposed in literature [1, 16, 32], we do not focus on looking for the
optimal classifiers to be added to the HEEs, instead we pick them from a pool of randomly
configured segmentation algorithms. Similar suboptimal approaches have already been suc-
cessfully employed by other works in literature [8, 9, 15]; however, we push this randomiza-
tion concept even further to prove that state-of-the-art results can not only be achieved but
also be overcome by extremely randomized algorithms appropriately combined into chaotic
highly connected ensembles.

In Sec. 2 the proposed model is introduced, while in Sec. 3 an extensive experimental
analysis is conducted over HEEs generated from a pool of two significant figure-ground seg-
mentation algorithms. We provide comparisons with some of the most popular model com-
bination frameworks and figure-ground segmentation methods, we evaluate our tree-based
HEEs against equivalent linear cascades and we aggregate them to form forests. The pro-
posed ensembles are able to outperform recent state-of-the-art approaches for different chal-
lenging segmentation datasets: INRIA Graz-02 [22], Weizmann Horses [3], Oxford Flower
17 [23] and the single class segmentation variant of VOC2010 [10, 20].

2 Proposed model

The proposed method consists in a building phase that automatically generates a figure-
ground segmentation model by combining a set of randomly configured figure-ground seg-
mentation algorithms.

Given a dataset D of images, we build the validation set V by randomly selecting one
third of the images in the training set of D. Let A be a pool of figure-ground segmenta-
tion algorithms and IF be a set of feature extractors. Each a € A must satisfy the following
constraints: (i) it produces as output a single gray-scale image in which the intensity level
assigned to each pixel represents the probability that it belongs to foreground, (ii) it requires
as input a set of patterns generated by a set of feature extractors F, C F or gray-scale images
produced by other algorithms in A, similarly to [16]. In Sec. 2.1 and 2.2 we provide a de-
tailed description of the figure-ground segmentation algorithms A and feature extractors F
used to obtain the experimental results of Sec. 3. The building phase builds a segmentation
tree 7 by combining a set of randomly configured algorithms from A (called nodes). The
whole method is driven by the maximization of a goodness function G(T,V) computed as
the VOC average accuracy [10] of T for the validation set V C D. We define G as such to
take into account pixel-wise precision and recall. The segmentation map M; for an image /
is generated by T by giving [ as input to all the feature extractors f € F;, Vt; € T. The feature
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(a) base step (b) bottom-up step (c) top-down step (d) segmentation of 1

Figure 1: An example showing how the building phase creates a tree T: the base step (a)
creates the first node of T, the bottom-up step (b) adds a new root node to 7', the top-down
step (c) adds a new leaf node to T. Once the building phase ends, it is possible to let T
produce the segmentation map of an image / by giving I as input to all the feature extractors
inT (d).

patterns generated by the extractors in F;, C IF are exploited by the node #; € T to produce a
segmentation map M;" that is given as input to its parent. This procedure is repeated until a
segmentation map M}" is produced by the root node ¢, € T. The final binary segmentation
map M is obtained by thresholding M}* with a threshold level equals to half the maximum
intensity value of the map. Note that, even though the ensembles built by our combination
approach are trees, we graphically represent them as directed acyclic graphs to emphasize
that the segmentation process starts from the leaves and ends at the root node.

The first step of the building phase of T is called base step.

Base step - the goal of this step is to create the first node of the tree 7', as shown in Fig. la.
We randomly select a figure-ground segmentation algorithm a € A along with a random
set of feature extractors F, C [F. After that, we train the selected node a using the patterns
produced by the feature extractors in F,. We repeat the previous actions n times until we
identify a as the node that maximizes G(a,V) over all the n generated nodes. Finally, a
becomes the first and only node ¢, € T'.

In order to extend 7', after the base step we perform a bottom-up step followed by a top-down
step.

Bottom-up step - the goal of this step is to add a new root node to 7', as shown in Fig. 1b.
Similarly to the base step, we perform a random selection of a figure-ground segmentation
algorithm a € A along with a random set of feature extractors F, C F. Then, we create a new
tree T by adding a as parent of the root node #, € T. This means that the output produced by
the root node ¢, is given as input to a along with the set of patterns generated by the feature
extractors in F,. We train a using the patterns produced by its feature extractors in F; and the
gray-scale map generated by #,. We repeat the previous actions n times, always starting from
the original tree 7'. Finally, we identify T as the tree 7' that maximizes G(T', V) over all the n
generated trees. We replace the original tree 7 with 7 if and only if G(T,V) — G(T,V) > €.

Top-down step - the goal of this step is to add a child node to each node # € T, as shown
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in Fig. 1c. We create a new tree T by adding a as a child of ¢. This means that the output
produced by a is given as input to ¢ along with the set of patterns generated by the feature
extractor algorithms in F; C IF. We recursively retrain the nodes of 7 starting from a all the
way up to the root. We repeat the previous actions at most n times (always starting from the
original tree T') until G(T,V) — G(T,V) > €. If this condition is satisfied then T becomes T
Note that we iterate the procedure only over the nodes that belong to the starting tree 7.

The two previous steps are recursively executed until a bottom-up step followed by rop-down
step do not add any new nodes to T. The final ensemble can be used to produce the segmen-
tation map for a given image I as summarized in Fig. 1d. The only non-randomly chosen
parameters of our model are n and €; the others are chosen inside a set of coherent values
during the random selection performed at each step. This is not new as other works obtain
good results by injecting randomness in their models [8, 15]. Our method is far from boost-
ing based approaches [35, 37] or CoBEs [28, 32] because the interaction between a node
and its children in 7' is much different from the interaction between a set weak learners in a
strong learner and also because we do not employ rejection rules. In fact, while the output
of a strong learner is usually obtained by computing a weighted sum over the predictions
produced by its weak learners [12, 29], the one produced by an internal node ¢ € T does
not only depend on the patterns generated by the feature extractors in F; but also on the out-
puts produced by its children, similarly to CCM [16]. The choice of using a top-down step
in addition to a classic bottom-up selection (as in common cascade combination models) is
because, by adding new leaf nodes at the base of the tree, we enrich the ensemble with in-
formation that is close to the input image /; this acts as a regularization factor as it increases
the generalization ability of the structure, helps prevent getting stuck at local maxima of the
goodness function and reduces the risk of overfitting, as proved in Sec. 3.1. We chose to
use tree-based models because, as investigated in [11, 38] and Sec. 3.2, they usually perform
better than similar multi-response linear structures. Moreover, at each level inside a tree we
can combine multiple weak and strong learners, while in a cascade this is not permitted, as
in CoBEs, CCM, model averaging and other linear model combination methods.

2.1 Figure-ground segmentation algorithms

We perform our experiments using two figure-ground segmentation algorithms: a sliding
window MLP [27] network and a model inspired by the one of [21]. In Sec. 3 they are called
Sw and Seg respectively. They both share the output image size s as common parameter.
Similarly to [16], the patterns generated by each segmentation algorithm in A are represented
as images, where each pixel denotes the probability of a pixel in the original image scaled
by s belonging to either foreground or background.

In computer vision, sliding window approaches are frequently employed to analyze the
content of an image. Several works assign a classification score to image sub-windows
by computing a set of features within these regions [6, 35] and exploit this information to
accomplish their tasks. In our experiments we employ a sliding window paired with a MLP
network to assign a score to each pixel of a given image. The MLP network is composed
by two hidden layers whose size is equal to half the dimension of the input layer. It receives
as input the values produced by a sliding window that reads the patterns generated by both
a set of feature extractors or other figure-ground segmentation algorithms. The size of the
sliding window w is randomly chosen during the building phase. The model is trained using
the rprop algorithm with the default configuration from Igel ez al. [18].
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Output Image (10) Seg (8) Seg
$s=189x155

Input Image size=118x97

)

Figure 2: An example showing the segmentation tree that outperforms the state-of-the-art
results for the Weizmann Horses dataset. The different nodes compensate each others’ errors:
Seg nodes produce accurate segmentations near the contours but lose parts of the object, Sw
nodes produce blurred segmentations but capture the whole object. The segmentation map
for the given input image is produced in less than one second.

The Seg algorithm is similar to the model of [21]; to speed it up we modified CPMC [4]
by segmenting the given image using k-means. The number of centroids & is randomly cho-
sen at each selection performed during the building phase. Similarly to [21], each segment
is assigned a figure-ground score based on the input patterns; the intensity level assigned to
each segment in the output soft segmentation map depends on its score.

Even though it would be interesting to include a higher number of algorithms in A, by
using two simple models that overcome other state-of-the-art methods when combined by
our framework we better highlight the effectiveness of our approach.

2.2 Feature extractors

In our experiments we employ a set of feature extractor algorithms, each of them receives
as input an image I and produces a pattern p; by computing one feature from the following
sets: (i) the filters bank proposed by Winn ef al. [36], based on the perceptually uniform
CIE Lab color space and consisting of scaled Gaussians, xy derivatives of Gaussians and
Laplacians of Gaussian, (ii) the Haar-like features proposed by Papageorgiou et al. [24], (iii)
the gradient filters described by Dalal and Triggs [6].

3 Experiments

In this section we present the results obtained by performing an extensive experimental anal-
ysis of the proposed method. Our results prove that: (i) the algorithm presented in Sec. 2
effectively builds an ensemble whose nodes collaborate towards the solution of the given
segmentation task (Sec. 3.1), (ii) the segmentation trees produced by our method can outper-
form state-of-the-art approaches for some of the commonly used figure-ground segmentation
datasets (Sec. 3.2).

3.1 Building phase analysis

Here we prove the effectiveness of the proposed approach by showing that: (i) randomly
configured Sw and Seg nodes achieve poor results when used individually, (ii) better perfor-
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Figure 3: Goodness value G for the Weizmann Horses test set when using single nodes
generated by randomly configuring 200 times the algorithms Sw and Seg. They yield similar
poor results when used independently but commit different prediction errors, as such they
are able to collaborate effectively when combined together, as shown in Fig. 4a.

mances can be obtained if we combine some of these nodes in a tree 7', (iii) the information
produced by each node of T is positively exploited by its parent. In all the experiments
we set n =12 and € = 0.05. When not explicitly stated otherwise, we use A and F as de-
scribed in Sec. 2.1 and 2.2. The parameters for the algorithms in A are randomly chosen in
the following ranges: s € [10,100], w € [1,10] and & € [5,50]. To reduce the computational
complexity of the nodes we set the following constraint: |F;| < 10 Vr € T, meaning that one
node may have at most 10 input feature extractors. In our experiments, the above parameter
configuration provided the best compromise between final overall results and computational
cost of the building-phase. We perform all the experiments of this section on the Weizmann
Horses dataset.

First, we start by generating a set of nodes by randomly configuring 200 times each
algorithm in A; after that, we compute the goodness values they individually achieve on test
set. The results we obtain are shown in Fig. 3. We observe that the randomly generated nodes
yield poor mean results 1t when used individually and that the standard deviation o of their
goodness values is small: pis,, = 58.90, G5,, = 7.87, lgeg = 63.13, O5eg = 5.95. To prove that
it is possible to obtain better results if some of these nodes are combined using our approach,
we perform a second experiment in which we execute the building phase to generate a tree
T; after each successful step we report the goodness of T for the validation and the test sets.
Results are shown in Fig. 4a. Taking into account that each successful step adds a new node
to T, we observe that the goodness of 7' on validation increases according to the ensemble’s
size and that the number of algorithms in A deeply affects the performances of T'.

The first observation is not surprising, since every successful step always increases the
goodness of a tree on validation (as described in Sec. 2). The latest is more interesting,
because it is in accordance with the assumption that different segmentation algorithms may
commit different mistakes [19] and it proves that the algorithms of A collaborate in T so that
the errors committed by one are compensated by the others and vice versa. This behavior
can be observed in Fig. 4a, where the tree obtained using A = {Sw, Seg} outperforms the
ones obtained using A = {Sw} and A = {Seg} after the third successful step.

An additional experiment is conducted to verify whether the correct information pro-
duced by each node of T is positively exploited by its parent. It consists in computing the
average Mean Square Error (MSE) produced by the nodes of the tree of Fig. 2 on the test set.
The obtained results are presented in Fig. 4b. To make the graph more readable, we compute
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Figure 4: (a) Comparison between goodness achieved for the Weizmann Horses test set
after each successful step of the building phase while varying the algorithms in A and the
parameters selection technique. The building phase for the mixed Sw and Seg tree terminates
after just 10 steps and achieves significantly better results both on test and validation than
the ones obtained using an optimal parameter initialization approach (best init) or just one
type of segmentation algorithm. (b) Average mean square error achieved for the Weizmann
Horses test set by the nodes of the model showed in Fig. 2, on a path from a leaf to the root.
The reported error bars represent the standard deviation of the mean square error. The error
decreases as we climb the ensemble toward its top node.

the average MSE values only for the nodes lying on the path that goes from the leaf node
labeled in Fig. 2 as (1) to the root (10). Results show that the mean square error decreases
as we move from leaf nodes towards the root and this proves that some of the correct pre-
dictions produced by nodes sharing the same level inside the tree are correctly transferred
to their ancestors. As we move towards the root node (10), the improvement in terms of
average MSE becomes less significant because we are approaching the optimal solution.

We perform another experiment in which we provide a comparison between the random
and the fixed parameters selection approaches (best init). In the fixed parameters selection
approach we perform a grid search to compute the parameters that maximize the goodness
value for each of the algorithms in A and we force the building phase to create a tree com-
posed only by optimal nodes, similarly to the linear models of [9, 16]. The grid search is
performed in s € {10,100}, w € {1,10} and P(F), randomly taking 20 samples for each
dimension. Results are shown in Fig. 4a. We observe that the building phase for the best
init approach terminates after adding just 4 nodes to the ensemble. This does not surprise
since, by exhaustively looking for the best node at each step, we approximate other model
combination frameworks (such as CCM or PSL); the ensembles generated by those methods
are usually not deep, mostly to prevent over-fitting the training data.

Additional experiments were performed to determine whether all the nodes in the trees
contribute toward the final predictions. We experienced a significant drop in performance
when we recursively removed leaf nodes without retraining the nodes in the trees not affected
by the change; the same behavior was observed when removing entire branches. However,
we believe it is possible to define a pruning procedure that coherently removes nodes to
speed up the segmentation process at the cost of reducing overall performances.

It is particularly interesting to observe that in many cases the set of image features auto-
matically selected by the building phase as input features for the nodes in the HEE resembles
the base set of Integral Channel Features [7] (LUV, gradient histogram and gradient magni-
tude) widely used by state-of-the-art rigid object detection algorithms. This proves that, even


Citation
Citation
{Dollár, Welinder, and Perona} 2010

Citation
Citation
{Heitz, Gould, Saxena, and Koller} 2008

Citation
Citation
{Dollár, Tu, Perona, and Belongie} 2009


8 GALLO et al.: HEE FOR HOLISTIC FIGURE-GROUND SEGMENTATION

My
I
(a) positive (b) negative

Figure 5: Examples of positive and negative segmentation results for images from different
classes of INRIA Graz-02 dataset. M;’ denotes the soft figure-ground segmentation maps
generated by the root node ¢, of HEE for the given input image I, while M; represents the
hard binary mask obtained by thresholding Mf’ to half its maximum intensity value. Mj is
superimposed over / for visualization purposes.

tough the proposed model is heavily random-based, it tries to build optimal segmentation en-
sembles.

The time required to complete each successful step of the building phase for the model
presented in Fig. 2 is exponential in the number of previous successful steps. In fact, as
we approach an optimal solution, it becomes difficult to find nodes that further increase the
goodness of the tree being built. Due to the non deterministic nature of the building phase,
we cannot determine a priori how long it takes to complete its execution. The building phase
for the model of Fig. 2 lasted approximately 3 days. The time required by a tree to perform
the segmentation of an image depends on the computational complexity of its nodes; the
model of Fig. 2 processes a 150 x 150 pixels image in less than one second.

3.2 Results

In this section, we compare the ensembles built using the proposed model with other state-of-
the-art algorithms and model combination methods. For all the experiments, we use the same
set of parameters described in Sec. 3.1. The comparisons are carried out for the following
datasets: Weizmann Horses [3], Oxford Flower 17 [23], INRIA Graz-02 [22] and the f/g
variant of VOC2010 [20].

The segmentation performances for the first two datasets were measured using the same
metrics of [2]. Results for the INRIA Graz-02 dataset were measured using F-measure, we
did not employ the PRC equal error rates for the same reason of [20]. For the figure-ground
variant of the VOC2010 dataset, we used the classic pixel-wise intersection-over-union (IoU)
as in [20]. In each experiment, we provided comparisons with AdaBoost [12], bayesian
averaging [17], CCM [16] and CoBE [32, 35]. For the Weizmann Horses dataset, we also
compared with the auto-context-cascade [33], which is a boosted cascade of auto-context
classifiers.
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Table 1: Comparisons with other state-of-the-art methods.

(a) Weizmann Horses (b) Oxford Flower 17
Method | S, (%) | S, (%) Method | S, (%) | S, (%)
[20] 94.7 / [23] / 94.0
[2] 94.6 80.1 [2] 97.7 92.3
[31] 954 / [5] / 90.4
[12] 90.0 72.9 [12] 93.1 85.5
[16] 89.3 79.6 [16] 86.3 84.5
[17] 77.1 58.9 [17] 87.3 81.0
[35] 90.8 76.0 [35] 95,8 90,6
LHEE 87.1 72.5 LHEE 89,6 87,6
HEE 98.2 90.2 HEE 98.1 96.1
(c) INRIA Graz-02 (d) VOC2010
Method | cars | people | bikes | avg. Method | IoU %
[22] 53.8 | 44.1 61.8 | 53.2 [20] 48
[20] 748 | 66.4 63.2 | 68.1 [4] 34
[13] 72.2 66.3 72.2 | 70.2 [25] 46
[12] 60.1 | 48.6 63.0 | 57.2 HEE 56
[16] 62.6 | 559 72.8 | 64.4
[17] 554 | 534 65.3 | 56.0
[35] 75.4 67.0 73.8 | 72.1
LHEE | 66,7 | 54,9 72,1 | 64.6
HEE 82.4 | 679 782 | 76.2

AdaBoost was applied to the algorithms in A = {Sw, Seg} in the following way: we built
a family of figure-ground segmentators H using the same process for selecting the best node
during the base init, selecting at most 20 optimal 4, € H by computing the weight distribution
D, over the pixels in the training set. Similarly, we obtain the results for CoBE (nodes are
boosted using AdaBoost as in [35]) and the model averaging approaches. In our experiments,
we adopted the CCM framework for solving the task of figure-ground segmentation, treating
the algorithms in A as black boxes. However, since CCM does not provide a method for
combining more than one type of segmentation algorithm in the same structure, we built a
cascade for each one of the two algorithms in A. As in the original paper, we used cascades
of fixed sizes 2 and 5 and we reported the best results among those achieved by the four
2-CCM and 5-CCM cascades.

To prove whether tree structures perform better than equivalent linear cascades, we mod-
ified our method to build degenerate trees without rejection rules (LHEE). Unsurprisingly,
the proposed tree-based structures always performed better than equivalent cascades, as ex-
pected from the results of [11, 38]. We have also built forests of sizes 20 and 5 of HEEs
(max depth 6 and 20 respectively, using the same set of features of [30]), in which the final
predictions were obtained by averaging the outputs of all the HEEs. The obtained results
were always close but lower than those of single HEEs.

The horizontal lines in Table 1 separate standard segmentation algorithms from model
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combination frameworks.

Weizmann Horses - We use 5-fold cross-validation. Results are shown in Table la. The
HEE of Fig. 2 outperforms all the other methods and the auto-context-cascade [33], obtain-
ing an F-measure of 0.91. It also outperforms the recent Cascaded Hierarchical Model [31]
and the Hough Forest method of [14].

Oxford Flower 17 - We only consider the subset of 848 images labeled for segmentation.
Results are reported in Table 1b. Tree-based HEEs outperform cascade HEEs and the other
model combination frameworks. LHEEs perform even worse than CoBE [35].

INRIA Graz-02 - Similarly to other methods [13, 20, 22], we build an independent model
for each class using the first 150 odd-numbered images for training and the first 150 even-
numbered for test. In Table Ic we report the obtained accuracies; the poor results for the
people class are due to the large number of possible variations in articulations and poses. As
suggested in [22], the use of a larger training set may improve the overall results. Examples
of positive and negative segmentation results for this dataset are presented in Fig. 5, they
highlight the limits of the output hardening function in generating the final segmentation
maps.

Figure-ground single class VOC2010 - As in other figure-ground segmentation works, we
fuse the ground-truth maps for the 20 object classes into single foreground/background maps.
We test using the 964 images in the validation set and train on the original public training
set. As shown in Table 1d, HEE obtains 56.1 IoU%, which is considerably higher than other
recent methods [4, 20, 25].

4 Conclusion

The effectiveness of the proposed model combination framework has been proved by the
results of an extensive experimental analysis conducted on both the model creation procedure
and the final ensembles. It is surprising how such a simple framework that requires no
user input nor extensive tuning constitutes a valid alternative to other widely used model
combination methods when combining heterogeneous segmentation algorithms. It is an open
question whether our method can pose a challenge to other similar approaches when applied
to more challenging tasks, such as object classification or multi-class image segmentation.
In future works, it would be interesting to cast it in a more general principled framework
in which algorithms for solving different tasks can be combined together to overcome their
individual weaknesses.
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