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Abstract

This paper describes a new method of unsupervised domain adaptation (DA) using
the properties of the sub-spaces spanning the source and target domains, when projected
along a path in the Grassmann manifold. Our proposed method uses both the geometri-
cal and the statistical properties of the subspaces spanning the two domains to estimate
a sequence of optimal intermediary subspaces. This creates a path of shortest length
between the sub-spaces of source and target domains, where the distributions of the pro-
jected source and target domain data are identical when projected onto these intermediate
sub-spaces (lying along the path). We extend our concept to the kernel space and per-
form non-linear projections on the subspaces using kernel trick. Projections of the source
and target domains onto these intermediary sub-spaces are used to obtain the incremental
(or gradual) change in the geometrical as well as the statistical properties of sub-spaces
spanning the source and target domains. Results on object and event categorization us-
ing real-world datasets, show that our proposed optimal path in the Grassmann manifold
produces better results for the problem of DA than the usual geodesic path.

1 Introduction
The amount of images and videos to be analyzed are increasing at an enormous rate due to
availability of cheap hardware and memory chips. But it is difficult to annotate and create
sufficient amount of labeled training samples from various datasets, to perform tasks like
categorization, detection, recognition, retrieval etc. Domain adaptation (DA) is the process
which uses labeled training samples available from one domain to improve the performance
of statistical tasks on test samples drawn from a different domain.

The domain from which the training samples and the test samples are obtained are termed
as the source domain and the target domain respectively. In order to estimate the distribution
of target domain, few training samples are also necessary from the target domain. Using the
training samples from both the domains, the method of DA improves classification perfor-
mance on the test samples drawn from target domain. Based on the type of training samples
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available from the target domain, there are mainly two types of DA: (i) unsupervised - a large
number of unlabeled training samples are available from target domain and (ii) supervised -
a few number of labeled training samples are available from target domain.

In this paper, we propose a new method of unsupervised DA where a set of domain invari-
ant sub-spaces are estimated using the geometrical and statistical properties of the source and
the target domains. This is a modification of the work done by Gopalan et al. [14], where the
geodesic path from the principal components of the source to that of the target is considered
in the Grassmann manifold, and the intermediary points are sampled to represent the incre-
mental change in the geometric properties of the data in source and target domains. Instead
of the geodesic path, we consider an alternate path of shortest length between the principal
components of source and target, with the property that the intermediary sample points on
the path form domain invariant sub-spaces. This is obtained by minimizing the difference
in Reproducing Kernel Hilbert Space (RKHS), between means of the projected source and
target domains on the intermediary subspaces, as the difference between the means of source
and target data in the RKHS is a measure of the discrepancy of the distributions between the
two domains [16]. Thus we model the change in the geometric properties of data in both
the domains sequentially, in a manner that the distributions of projected data from both the
domains always remain similar along the path. The entire formulation is done in the kernel
space which makes it more robust to any non-linear transformations.

The work described in this paper successfully exploits two different concepts of DA,
which are: (i) projecting onto a domain invariant sub-space where the distributions of source
and target domains are similar and (ii) modeling the sequential (or gradual) change of the
sub-spaces spanning the source and target domains. We also provide a formulation to cal-
culate intermediary points on the desired path between the sub-spaces of source and target
domains on the Grassmann manifold in the kernel space. Hence, non-linear transformation
of data is also dealt implicitly. Results on real-world datasets show the effectiveness of our
proposed method for the task of categorization, when compared with some state of the art
methods of unsupervised DA.

The rest of the paper is as follows. Section 2 briefly describes the state of the art of
the related works. Section 3 explains the proposed method of DA. Section 4 shows the
experimental results and section 5 concludes the paper.

2 Literature Review
Domain adaptation has gained enormous attention in the recent past. The concept is similar
to compensating the bias of a dataset [21] and covariate shift [27]. There are two notable cat-
egories of approaches to handle this problem of unsupervised DA. The first one is a statistical
approach, where a domain invariant sub-space is estimated such that in the projected space
disparity in the distributions of two domains is minimized. Several methods [1, 15, 23] have
used this concept to build a suitable sub-space. Apart from the disparity in distributions, sev-
eral other cost functions for locality preservation [23, 29], empirical error in target domain
[30], divergence measure [24, 28] etc. have also been considered for estimating the optimal
transformation matrix/sub-space. Most of these works perform the projection in the kernel
space in order to handle non-linear transformation of data. The second well noted category
of method for DA is to consider the incremental or sequential change in the geometrical
properties of the source and target domains, rather than performing a one shot transforma-
tion [14], [13], [6]. The initial work was suggested by Gopalan et al. [14], where a geodesic
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path between the principal components of source and target domain data is considered in
the Grassmann manifold. The intermediate sampled points on the path gives an estimate
of the continuous change of the properties of sub-spaces of source and target domain. This
was later enhanced by Gong et al. [13], where an infinite number of intermediary sampled
points are considered on the geodesic path, estimated by the geodesic flow kernel. In other
notable works, Fernando et. al. [11] has calculated a sub-space using eigen-vectors of two
domains such that the basis vectors of transformed source and target domains are aligned.
Traditional SVM and other classifiers have been modified appropriately such that these clas-
sifiers when trained on source domain data reduces classification error on the target domain
data [19, 22, 30]. Application of DA for improved results of object categorization and video
classification have been discussed in [1, 7, 9, 11, 13, 14, 24, 25].

3 Proposed Method of Estimating Sequence of Domain
Invariant Sub-spaces

A popular method of DA is to find a domain invariant sub-space [1, 23], where the distribu-
tions of the source and target domains are similar. It has also been shown in [13, 14], that
using the concept of geodesic path between the source and the target domain sub-spaces on
Grassmann manifold, boosts the performance of DA. The intermediary points sampled on
the geodesic path, form a sequence or a set of sub-spaces. We thus formulate our proposed
method of DA, where we estimate a set of intermediary sub-spaces, sampled from a path on
Grassmann manifold between the two sub-spaces spanning the source and target domain re-
spectively, such that the distributions of source and target domains are similar when projected
onto the estimated sub-spaces. We perform this by considering an alternative path, instead
of the geodesic path, between the sub-spaces spanning the two domains on the Grassmann
manifold. To deal with non-linear transformations of data, we find the required path between
the two aforesaid sub-spaces in a suitable kernel space.

The steps of the algorithm of the proposed method of unsupervised DA, are as follows:
(i) Obtain the kernel Gram matrices for the source and target domain data, (ii) Obtain the
eigen-vectors of the two Gram matrices, (iii) Find the appropriate start and end points of
the path on the Grassmann manifold, (iv) Find the intermediary domain invariant sub-spaces
on the Grassmann manifold, (v) Project the source and target domain data onto each of the
intermediary sub-spaces along with the start and end points of the path and (vi) Concatenate
the projections for each instance and apply PLS to obtain the final domain invariant features.

In the following sub-sections, we first briefly mention the underlying principles for the
proposed method DA and then explain our formulation for exploiting these existing concepts
to design a novel approach to obtain the domain invariant representation, which give better
classification results on real-world datasets.

3.1 Underlying Principle

Maximum Mean Discrepancy using difference of means in two domains [16] - The main
purpose of DA is to bridge the gap between the distributions of the source and target domain.
Estimating the underlying distribution from the few available sample points is a cumbersome
and error-sensitive process. One effective way to compare the two distributions is using the
Maximum Mean Discrepancy (MMD), which says that if the distributions of two feature sets
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are given by l and r, then the distributions are equal, i.e., l = r ⇐⇒ El( f (xl)) = Er( f (xr)),
where xl and xr are the sets of sample points drawn from independently and identically
distributed (i.i.d.) sets l and r respectively. Also, f (.) is a continuous bounded function on xl
and xr. Generally, f (.) is taken as unit ball function. It is known to us that universal kernels
(Gaussian and Laplacian kernels) are unit ball functions, though polynomial kernel function
has also been used for calculating MMD.

Grassmann manifold [10] - The Grassmann manifold, Gd,p, consists of all sub-spaces
of dimension d× p. A point on the Grassmann manifold represents a sub-space of dimen-
sion d × p and hence these two terms are used inter-changeably in the rest of the paper.
Since a sub-space can have multiple sets of basis vectors, only the orthogonality constraint
for estimating the optimal sub-space is not enough. Optimization should be performed on
Grassmann manifold, which has been well explained by Edelman et al. [10].

Distance between two sub-spaces [12] - Distance between two sub-spaces in Rn×p,
which are represented by two points on the Grassmann manifold (Gd,p), can be measured by
the set of principal angles θi, i = 1,2, . . . p between these sub-spaces. These principal angles
measure the geometrical dissimilarity between two sub-spaces and the projection distance
between two sub-spaces A1 and A2 is given as: δpro j(A1,A2) =

(
∑

p
i=1 sin2θi

)1/2. The span
of sub-spaces A1 and A2 are given by span(A1) = A1AT

1 and span(A2) = A2AT
2 respectively.

The sum of the squared cosine of the principal angles between two sub-spaces is given by
the dot product of the spans of the sub-spaces: ∑

d
i=1 cos2θi = 〈span(A1),span(A2)〉, where

θi are the principal angles between two sub-spaces. If the trace of a matrix A be denoted as
tr(A), then the square of the projection distance (as in [18]) is expressed as:

δ
2
pro j(A1,A2) = p−

p

∑
i=1

cos2
θi = p− tr(A1AT

1 A2AT
2 ) = p− tr(AT

2 A1AT
1 A2) (1)

Geodesic flow in Grassmann manifold [10, 14] - It has been observed that model-
ing the intermediate incremental stages due to changes in the geometric properties of the
source and target domains is more effective than a one shot transformation of the features
of source domain. Gopalan et al. [14] have considered the geodesic path between the sub-
spaces spanning source and target domains in the Grassmann manifold. A geodesic path
between the source and target gives the shortest path of gradual change in geometric prop-
erties of sub-spaces between two domains. A finite number of points lying on the geodesic
path are sampled and the features from both the domains are projected onto the intermedi-
ary subspaces. Projection of source and target domain data onto these intermediary points
depicts the continuous change in the geometric properties of the sub-spaces spanned by the
two domains.

If UX and UT be the principal vectors of source and target domains, then the geodesic flow
from US to UT is given as: PG(t) = Q[exp(tB)]J , where Q ∈ Rd×d is an orthogonal matrix

such that QTUX = J = [Ip;0(d−p)×p], Ip ∈ Rp×p is an identity matrix and B =

[
0 AT

−A 0

]
is

a skew-symmetric matrix, where A ∈ R(d−p)×p. A specifies the direction and speed of the
geodesic flow between UX and UY (refer to [14] for details); PG(0) = UX , PG(1) = UY and
for any other value of t (0 < t < 1), we obtain an intermediary sub-space Gi lying on PG.

Notations - Let X and Y be the source and target domains having nX and nY number
of instances respectively. Let the ith and jth instances of X and Y be represented as xi and
y j respectively. If Φ(.) is a universal kernel function, then in kernel space the source and
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target domains are Φ(X) ∈ RnX×d and Φ(Y ) ∈ RnY×d respectively. Let KXX and KYY be the
Gram matrices of Φ(X) and Φ(Y ) respectively (KXX =Φ(X)Φ(X)T , KXY =Φ(X)Φ(Y )T and
KYY = Φ(Y )Φ(Y )T ). Let D = [X ;Y ] denote the combined source and target domain data, and
the corresponding data in kernel space is Φ(D). The Gram matrix formed using D is given by

K =

[
KXX KXY
KT

XY KYY

]
. Let, the transpose of a matrix A be denoted as AT . The formulation of the

cost function required to find the optimal sub-spaces along the path (between the sub-space
spanned by Φ(X) and Φ(Y )) is explained in the following sub-sections.

3.2 Estimating distance between two means
The discrepancy of the distribution of two domains can be measured by the distance between
the means of two domains in RKHS using a universal kernel function. Let Φ(X̃) and Φ(Ỹ )
represent the projections of Φ(X) and Φ(Y ) respectively onto a subspace Wi ∈ Rd×p, which
is a point on the Grassmann manifold Gd,p. Here, d is the dimension of the source and target
domain in RKHS and p is the dimension of the optimal sub-spaces. The mean of Φ(X̃)
and Φ(Ỹ ) are: 1

nX
∑

nX
j=1 Φ(x j)Wi and 1

nY
∑

nY
j=1 Φ(y j)Wi respectively. Then, the square of the

distance between the means of two domains is given as:

δ
2
µ(i) =

(
1

nX

nX

∑
j=1

Φ(x j)Wi−
1

nY

nY

∑
j=1

Φ(y j)Wi

)(
1

nX

nX

∑
j=1

Φ(x j)Wi−
1

nY

nY

∑
j=1

Φ(y j)Wi

)T

= tr(W T
i Φ(X)T I1Φ(X)Wi)− tr(W T

i Φ(X)T I2Φ(Y )Wi)

−tr(W T
i Φ(Y )T I2Φ(X)Wi)+ tr(W T

i Φ(Y )T I3Φ(Y )Wi)

= tr
(

W T
i Φ(D)T

[
I1 −I2
−I2 I3

]
Φ(D)Wi

)
= tr

(
ZT

i ΓZi
)

(2)

where, Wi = Φ(D)T Zi, Zi ∈ R(nX+nY )×p, Γ =

(
K
[

I1 −I2
−I2 I3

]
K
)

and [I1]nX×nX , [I2]nY×nX

and [I3]nY×nY are matrices containing all elements as 1/n2
X , 1/nX nY and 1/n2

Y respectively.

3.3 Estimating distance between two sub-spaces in kernel space
We consider a path of shortest length between the principal components of Φ(X) and Φ(Y )
such that the projections of the two domains onto the intermediate sub-spaces along the path
have identical distribution. Let {P} be the set of all such paths with different lengths. Our
aim is to find the shortest path PW ∈ {P}. Using lemma 1 we can state that the principal
components of Φ(X) and Φ(Y )UΦ

Y UΦ
X

T are the same, where UΦ
X and UΦ

Y are the principal
components of Φ(X) and Φ(Y ) respectively.

Lemma 1. If UA and UB are the principal components of two datasets A and B respectively,
then the principal component of BUBUT

A is UA.

Proof. Let ΛA and ΛB be two diagonal matrices whose diagonal elements are the eigen-
values of A and B respectively. The covariance matrices of A and B can be written as UAΛAUT

A
and UBΛBUT

B respectively. Now, the covariance matrix of B̂ = (BUBUT
A ) is given as:

B̂T B̂ =UAUT
B BT BUBUT

A =UAUT
B UBΛBUT

B UBUT
A =UAΛBUT

A

This shows that the principal components of BUBUT
A is UA.
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Hence, instead of considering UX as the starting point of the path PW , the principal com-
ponents of Φ(Ds) is considered, where Φ(Ds) = [Φ(X);Φ(Y )UΦ

Y UΦ
X

T
]. Similarly, the end

point of PW can be obtained by the principal components of Φ(Dt) = [Φ(X)UΦ
X UΦ

Y
T ;Φ(Y )].

Let, UΦ
s and UΦ

t be the principal components of Φ(Ds) and Φ(Dt) respectively. Also, V Φ
X

and V Φ
Y be the eigen-vectors of KXX and KYY respectively. Similarly, let V Φ

s and V Φ
t be the

eigen-vectors of Ks and Kt respectively, where Ks and Kt are the Gram matrices built on
Φ(Ds) and Φ(Dt) respectively. Then we can write [26],

UΦ
X = Φ(X)TV Φ

X (3)

UΦ
Y = Φ(Y )TV Φ

Y (4)

UΦ
s = Φ(Ds)

TV Φ
s (5)

UΦ
t = Φ(Dt)

TV Φ
t (6)

Let, Gi denote the ith sampled point on the geodesic path PG and the ith sample point on
PW represent the sub-space Wi. As UΦ

s and UΦ
t change along the paths PG and PW , V Φ

s and
V Φ

t also modify proportionally due to the linear relationship (Eqns. 5 & 6). The start and the
end points of PW are given by W1 = V Φ

s and WN′ = V Φ
t respectively, while the intermediate

points are denoted by Wi, i = 1, . . .N′− 1. Thus including UΦ
s and UΦ

t , N′ number of sub-
spaces or points on PG and PW are considered.

Now, PW is the path of shortest length if the sampled points from PW is closest to the
corresponding sampled points from PG, i.e. dpro j(Gi,Wi) is minimum, ∀i = 2, . . . ,(N′−1).
The square of the distance between two sub-spaces, PG

i and PW
i in the kernel space, can be

derived using lemma 1, as:

δ
2
pro j(Wi,Gi) = p− tr(W T

i UΦ
i UΦ

i
T

Wi) (7)

= p− tr(ZT
i Φ(D)Φ(D̂i)

TV Φ
i V Φ

i
T

Φ(D̂i)Φ(D)T Zi) (8)

= p− tr(ZT
i K̂iV Φ

i V Φ
i

T
K̂T

i Zi) = p− tr(ZT
i ΠiZi) (9)

where, Πi = K̂iV Φ
i V Φ

i
T K̂T

i . Φ(D̂i) is an appropriate projection of Φ(D) such that the princi-
pal component of Φ(D̂i) is UΦ

i (using Lemma 1). V Φ
i is the ith intermediary point sampled

on the geodesic path from V Φ
s to V Φ

t . Using lemma 1 and Eqn. 5, the Gram matrix K̂i (for ith

sub-space in the sequence) is defined as:

K̂i = Φ(D)Φ(D̂i)
T
= Φ(D)UΦ

i UΦ
s

T
Φ(D)T = KV Φ

i V Φ
s

T
K (10)

3.4 Estimating intermediary sub-spaces
We can now estimate the intermediary sub-spaces on PW using Eqns. 2 and 9. For an
optimal value of Zi, δ 2

mu and δ 2
pro j(Gi,Wi) should be minimum. The optimization framework

for estimating Zi (∀i = 2, . . . ,N′−1), is:

maximize
Zi

tr(ZT
i ΠiΓ

−1Zi) (11)

subject to ZT
i Zi = I (12)

Since the orthogonality condition in Eqn. 12 is not enough to find the optimal point in
Grassmann manifold, we solve the problem using Newton’s method, as given by Edelman
et al. [10]. We use the Manopt toolbox [3] for solving the optimization problem. After
obtaining the set of optimal Zis, the projections of the data onto Wis are given as:

Φ(D)Wi = KZi, ∀i = 2, . . . ,(N′−1) (13)
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The projection of the data points onto the first and last (or initial and final) points of the
path PW i.e. on UΦ

s and UΦ
t are:

Φ(D)UΦ
s = Φ(D)Φ(Ds)

TV Φ
s =

[
KXX KXXV Φ

X V Φ
Y

T KYY

KT
XY KT

XYV Φ
X V Φ

Y
T KYY

]
V Φ

s (14)

Φ(D)UΦ
t = Φ(D)Φ(Dt)

TV Φ
t =

[
KXYV Φ

Y V Φ
X

T KXX KXY

KYYV Φ
Y V Φ

X
T KXX KYY

]
V Φ

t (15)

For the final task of classification, only the projections of the source and target domain
data onto the intermediary sub-spaces are required. Thus, once the projections on the in-
termediary sub-spaces are obtained, it is not required to find the actual path PW . The path
PW can be approximated by a piece-wise geodesic path on the Grassmann manifold, which
sequentially connects all the intermediary sampled points between the principal components
of the source and target domains in the correct order. Hence, using the appropriate projec-
tions onto the N′ sampled points on the path PW (Eqns. 13, 14, 15), we model the sequential
changes of both the domains in such a manner that their distributions become identical.

3.5 Calculating domain-invariant features for classification
After obtaining the optimal sub-spaces, the projections of the source and target domains onto
the intermediary sub-spaces are obtained and concatenated together, as done in [14]. If there
are N′ number of sub-spaces considered, including the principal components of source and
target domain, we then get the source and target domain features as nX ×N′p and nY ×N′p
matrices. Finally, Partial Least Square (PLS) [17] is applied on the feature sets of source
and target domains to obtain an m-dimensional (m << N′p) feature vector for each instance,
which are finally used for classification using KNN and SVM classifiers.

4 Experimental Results
We evaluate our proposed method of unsupervised DA on real-world datasets for the tasks
of object and event categorization. We have used the Gaussian kernel function to build the
Gram matrices. Experiments performed using the different methods of DA, are discussed in
the following.

Object Categorization in images - We evaluate the performance of the proposed method
of DA for improving the results of object categorization using Office + Caltech datasets [13].
The dataset contains four domains: Amazon (A), Caltech (C), Dslr (D) and Webcam (W),
with 10 classes of objects in each of the domains. Each image is resized to 300× 300
dimension and SURF [2] features are extracted from the images to form a codebook of
size 800. The results reported in this paper are obtained by using the features shared by
the authors of [13]. We follow the same experimental protocols as described in [14]. For
Amazon and Caltech domain, eight random samples per class and for Dslr and Webcam
domain, three random samples per class have been chosen as training samples from target
domain. We have considered nine intermediary sampled points on the path PW , excluding
the start and the end points, which gives the best average result. K nearest neighbor (K = 1)
has been used for the purpose of classification for all the results in this case.
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It is necessary to compute optimal values of two parameters for experimentation. The
first parameter is the dimension of the sub-spaces (and Grassmann manifold) which repre-
sents the points on the desired path and the second parameter is the dimension of the final
domain invariant features which are obtained after performing PLS. We empirically obtain
the pair of optimal parameter values in the range 5 to 25 and 20 to 200 respectively. The best
average result across all the 12 source-target pairs, is obtained when the dimension of the
Grassmann manifold is 15 and the dimension of the domain invariant features is 110. Plots
shown in figure 1 (a) and (b) show the variation in the average classification accuracy, with
respect to the change in the dimension of the Grassmann manifold and the dimension of the
final domain invariant features obtained after PLS respectively.

(a) (b)

Figure 1: Plots of average classification accuracies with change in dimensions of the: (a)
Grassmann manifold and (b) final domain invariant features, after applying PLS.

Table 1 shows the classification accuracies for 12 different pairs of source and target do-
mains, using a 25-fold cross validation. We compare our method with other unsupervised
DA methods such as, Transfer Component Analysis [23], Geodesic Flow Subspace [14],
Geodesic Flow Kernel [13] and Subspace alignment [11], while NA denotes ‘No Adapta-
tion’, in which case only the source domain samples are used for training the classifier. In
table 1, classification accuracies of the methods used for comparison are taken from [11].
From the above experimentations, we infer that the proposed method of unsupervised DA
gives better result than other state of the art works in majority of the cases.

Table 1: Classification accuracies (in %-age) on Office+Caltech dataset [13] using different
techniques of unsupervised domain adaptation (best results highlighted in bold).

Method C→A D→A W→A A→C D→C W→C
NA 21.5 26.9 20.8 22.8 24.8 16.4

TCA [23] 21.96 16.81 13.43 16.18 17.67 11.14
GFS [14] 36.9 32 27.5 35.3 29.4 21.7
GFK [13] 36.9 32.5 31.1 35.6 29.8 27.2
SA [11] 39.0 38.0 37.4 35.3 32.4 32.3

Proposed 42.63 44.16 44.65 34.40 41.56 43.26

Method A→D C→D W→D A→W C→W D→W Average
NA 22.4 21.7 40.5 23.3 20.0 53.0 26.18

TCA [23] 16.69 22.8 32.31 23.60 22.03 44.69 21.61
GFS [14] 30.7 32.6 54.3 31.0 30.6 66.0 35.67
GFK [13] 35.2 35.2 70.6 34.4 33.7 74.9 39.76
SA [11] 37.6 39.6 80.3 38.60 36.80 83.6 44.24

Proposed 38.82 43.64 80.57 39.31 42.27 78.03 47.76
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Event categorization in videos - We use three video datasets: Kodak [8, 9], YouTube
[8, 9] and CCV dataset [20] as the 3 domains. We consider the YouTube data as the source
domain and observed the classification accuracies on Kodak and CCV domains as done in
[8]. We consider 6 common classes (events) between YouTube (906 videos) and Kodak (195
videos) as in [9], and 5 classes (events) between YouTube (821 videos) and CCV (2440
videos) as in [5]. For the first case, we use the distance matrices of Kodak and YouTube
domains using SIFT and spatio-temporal (ST) features (HOG and HOF) 1; and for the second
case, we have obtained the codebook of size 2000 obtained using SIFT and ST features, as
shared by the authors in [9]. Five samples per class have been randomly selected from the
target domain for training the SVM classifier [4] with Gaussian kernel. Like the previous
experiment, nine intermediate sub-spaces are considered apart from the start and the end
points of the path on Grassmann manifold. The dimension of the Grassmann manifold is
considered to be 10 and the dimension of the final domain invariant features obtained after
applying PLS is 120. We have compared our proposed method with TCA [23]. Since, our
experiments use the distance matrices as inputs, we are unable to obtain the performances of
GFS [14], GFK [13] and SA [11] methods for this task. Figure 2 shows the Mean Average
Precision (MAP) for the two cases of event categorization using both SIFT and ST features
separately using a 25-fold cross validation. Results show that our proposed method of DA
gives the best result in three out of four cases.

Figure 2: Mean Average Precision (MAP) obtained using two sets of features from three
real-world datasets. Proposed method of domain adaptation (in red) performs better than
TCA [23] (in green) and ‘No Adaptation’ (in blue) techniques.

5 Conclusion
In this paper, we have proposed a method of sequential domain adaptation by estimating a
set of domain-invariant sub-spaces, along a path on Grassmann manifold. We achieve this by
considering the shortest path between the sub-spaces spanning the source and target domains,
where the intermediate points sampled on the optimal path represent domain-invariant sub-
spaces with identical distributions of both the domains. The proposed method is able to
handle non-linear transformation of data by using the representation in a higher dimensional
kernel space. Experiments on real-world image and video datasets show that the proposed
method performs better than most other relevant methods published on unsupervised DA.
The method can be improved by automating the selection of the dimension of Grassmann
manifold which has the potential to improve the classification performance.
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