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Abstract

In this paper, we use random walks to infer information about the disparities in the
image. While the random walks help to maintain sharp object boundaries, we introduce
a correlation step that handles occlusions and slanted surfaces. The random walks are
then used to build a stochastic cost function which serves to identify the most probable
disparities. This also delivers valuable information about the reliability of the depths by
exploiting their consistency statistically.

Our method delivers very good results by means of local matching, but we also
demonstrate that the obtained cost function is well suited for global optimization tech-
niques. Moreover, our consistency maps deliver reliable statistical information about the
confidence of disparity maps. In our paper we provide extensive evaluations with chal-
lenging images and show that our cost function based on random walks is very useful.

1 Introduction
The goal of this paper is to present a novel stochastic cost function for binocular stereo
vision that delivers statistics about the most probable disparities on the pixel level. We drive
these statistics by many independent stochastic processes so that robustness to outliers can
be achieved. Each of these stochastic processes may be understood as an individual who
is requested to deliver his opinion about the depth. Finally, the idea is to fuse all these
individual measurements into one global disparity map.

In this paper, we use random walks for this. A random walk randomly traverses the image
where at each step of the walk, an adjacent pixel location is chosen based on color similarity.
In this sense, a random walk can be viewed as a local segmentation which is assumed to be
robust along discontinuities. The set of pixels which is covered by the random walk is used to
infer information about the disparity. In order to handle perspective distortions from slanted
surfaces we incorporate orientations and occluded regions into the correlation step. The
global cost function is finally obtained by a novel voting technique based on these random
walks. This serves to identify the most probable disparities by collecting the statistics of all
walks. After this voting step, a global optimization may be run or the disparity map may
be extracted using a winner-takes-all (WTA) strategy. Finally, confident disparities may be
propagated into inconsistent regions. In this paper, we demonstrate that random walks are
useful for gathering important statistics about disparities. One strong property of our method
is that our cost function is statistically motivated and we show that our proposed statistical
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consistency is a powerful and very useful confidence measure with which occlusions may be
filtered out effectively.

We provide an extensive evaluation with elaborate details. Our method compares very
well with the current state-of-the-art and is capable of achieving top rankings at the Middle-
bury benchmark. Our results demonstrate that our cost function can deal with notoriously
difficult situations like occlusions, discontinuities and slanted surfaces.

2 Related Work
Since stereo vision is a very broad area we focus here only on the most relevant works (an
overview on early methods is given in [16]).

The main driving aspect in our paper is the use of random walks to retrieve matching
costs. This is in some sense related to the works which use support weights, like [10, 22].
However, in their approaches no slanted surfaces are addressed and therefore known lim-
itations exist in such situations. Moreover, no statistical reasoning is possible in these ap-
proaches. The problem of slanted surfaces was later addressed in [4], where [22] is combined
with the iterative PatchMatch algorithm. After a random initialization of depths and orien-
tations, the disparity map is iteratively updated by several propagation and refinement steps
using relatively large matching windows. The results of this approach are quite good but also
no statistical reasoning is provided for this method. For the sake of completeness recent ex-
tensions should also be mentioned, where the original idea of [4] is combined with different
optimization approaches [1, 8] or with edge-aware filtering based on super pixels [14].

Shen et al. [17] use the improved random walks algorithm of Grady [7] to solve a global
energy minimization problem in order to compute reliable matches. In a second step, they
interpolate matches in ambiguous regions. Their approach is very different from our work
because we explicitly simulate random walks and use them as matching primitives. Further,
we incorporate surface orientations and we also introduce a novel voting technique based on
simulated random walks.

Oh et al. [15] used random walks for cost aggregation, but with a completely different
principle. In their work, the aggregated matching costs are computed using a global iteration.
In every iteration, costs are summed by using previously computed aggregated costs. While
this is a relatively efficient structure, our method is very different because for every pixel we
perform, in some sense, a local segmentation of the image and use it for cost aggregation
and voting. Furthermore, we explicitly address slanted surfaces and perform a statistical
reasoning among all walks using our voting technique. In the results we will show that this
method has weaknesses at slanted surfaces.

In some works image segmentation has been incorporated into global approaches with
excellent results [3, 5, 12, 18, 19, 20]. However, in practice, it is difficult to identify the
optimal segmentation parameter set for a broad spectrum of image data.

3 Method
Fig. 1 shows an overview of our method. (a) We first compute pixel-wise matching costs.
(b) In our cost aggregation stage, we simulate a random walks for every pixel of the im-
age. Since random walks rarely cross large image gradients, this can be understood as a
pre-segmentation step to increase robustness at discontinuities. We also explicitly consider
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Figure 1: The processing steps of our method.

slanted surfaces by evaluating different surface orientations. (c) Once we computed a cost
function for every random walk, we introduce a novel voting technique that fuses informa-
tion of all random walks into one global voting space. The collected votes contain statistical
information about the likelihood of every disparity at every pixel location and also reveal in-
consistencies in places where matching is ambiguous. (d) The votes may be used in a global
optimization or for direct disparity selection. (e) After this step, random walks may be used
to propagate reliable matches into inconsistent regions.

3.1 Basic Definitions
Matching Costs We compute pixel-wise matching costs CM(x,y,d) where (x,y) is defined
for all possible image locations of the left image IL and d iterates over the set of possible
disparity values: dmin ≤ d ≤ dmax. CM(x,y,d) expresses the dissimilarity of a correspondence
between the left image pixel IL(x,y) and right image pixel IR(x− d,y) using the rectified
image pair. In practice, we use the sampling invariant differences of [2].

Random Walks We define a random walk as an ordered sequence of pixel locationsR(xS)=
〈ri〉0≤i≤N starting at r0 := xS and with a length of N steps. At each step of the walk,
i.e. ri 7→ ri+1, a new pixel is randomly selected for ri+1 from the four-connected neighbour-
hood of ri based on transition probabilities pT (ri+1 |ri). It is common practice to assume
that depth discontinuities coincide with large color gradients and therefore we define the
transition probability pT as a function of the color similarity:

pT (ri+1 |ri) =
1

C(ri)
· exp

(
−dC(I(ri)−I(ri+1 +(ri+1− ri)))

σC

)
(1)

where ri+1 is a pixel from the four-connected neighborhoodN (ri) of ri. The value C(ri) is a
normalization factor, such that the transition probabilities sum up to one for every pixel. The
function dC computes the color norm and in practice we use dC(c) =

√
cT c, where the vector

c contains the differences of the individual color channels. The parameter σC controls how
likely it is that a random walk steps towards a pixel with a higher color difference. Further,
in (1) we used a step size of 2 pixels for the probability computation because along depth
discontinuities, there is a 1 pixel wide region of interpolated, unreliable color values, which
is a result of pixel sampling. By using a step size of 2 for probability computation, the risk
is reduced that a random walk crosses an object boundary.

3.2 Left-Right Simulation
In this section, we take a closer look at the behavior of random walks near occlusions. In-
cluding occluded pixels during cost aggregation is highly problematic, because pixels with
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Figure 2: Left-right simulation of random walks for the image pair Teddy. White arrows
indicate the pixels at which random walks were started. Occluded pixels are painted in blue.
In the top left image the random walk was started at a non-occluded pixel, but crosses the area
of occluded blue pixels. In the bottom right a random walk does not step into an occluded
area because no occlusions are present there in the right image.

no physical relation to the other image would be correlated with completely wrong surfaces
and the cost values would not be reliable. In Fig. 2, we show a magnified region of the stereo
image pair Teddy from Middlebury [16], where random walks are simulated in both left and
right images starting at the pixel labeled with a white arrow. In the upper left image a left
random walk painted in red was simulated. In the lower right image a right random walk
painted in green was simulated. The left random walk crosses occluded pixels which are
painted in blue. This does not happen for the right random walk because no occluded pixels
are present in the vicinity in the right image. In general, both the left and right images con-
tain occluded pixels, however at different locations in the images. Therefore, we simulate
random walks for the left and right images independently and denote them as RL and RR

respectively.

3.3 Cost Aggregation using Multiple Surface Orientations
One of the big challenges for stereo methods is the treatment of slanted surfaces and in
the following we describe how we tackle this problem. First, we assume that the surface
shape can be linearly approximated for the region covered by a random walk. While this
assumption might be violated for some walks that traverse a large image region, we argue
that the failure of some walks is negligible for the final result, due to our voting technique
presented in the next section. Additionally, random walks are known to stay asymptotically
at the same place, so the majority of pixels is usually found near the start pixel. Hence,
the idea is that only a few surface orientations should be sufficient, because for small image
patches only a discrete, finite number of possible perspective distortions can happen between
a given, small number of pixels. In the worst case, the aggregated cost will have a reduced
performance similar to methods that perform disparity estimation using a fronto-parallel
prior. Our experiments clearly show that our approach can handle very difficult geometries.

To compute the aggregated cost CA(x,d,δk) for a given pixel x and disparity d, we use
the random walks defined in the left and right image and take different a priori surface ori-
entations δk ∈ ∆ into account. To perform left to right correlation, we use the random walk
RL(x) = 〈ri〉0≤i≤N and sum the pixelwise costs CM along the walk:

CL
A(x,d,δk) =

N

∑
i=0
CM(ri,d +δ

T
k (ri− r0)) (2)
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The expression d +δ T
k (ri− r0) in (2) adapts the disparity value to the given surface orienta-

tion δk, which is defined as the disparity gradient in horizontal and vertical direction. Note
that in this formulation some pixels may occur multiple times in the correlation sum.

For right to left correlation we simulate a random walk at each pixel in the right image.
In this case, the random walk is defined as: RR(x− (d,0)T ) = 〈ri〉0≤i≤N . Using this random
walk, we compute the cost as

CR
A(x,d,δk) =

N

∑
i=0
CM(ri +(d,0)T ,d +δ

T
k (ri− r0)) (3)

Similar to CM , CR
A(x,d,δk) is defined for left image pixels to make the reasoning on cost

values easier. Therefore, we have to transform right image positions ri of the random walk
RR into left image positions using ri +(d,0)T .

Finally, we obtain a global cost volume which assigns a dissimilarity score to every
disparity and orientation given a pixel location x of the left image using CA(x,d,δk) =
min(CR

A(x,d,δk),CL
A(x,d,δk)). Here, the basic idea is that the aggregated cost of a random

walk is usually higher if the walk covers occluded pixels. In the next section, we analyze
the cost volume CA to determine depths and orientations for every random walk of the left
image.

3.4 Voting using Random Walks

In this step, we transform the volume of aggregated costs CA into a voting space V using a
novel technique based again on random walks. The main intuition consists of two simple
observations. Firstly, the minima of the aggregated costs CA provide depth and orientation
hypotheses for all pixel locations along a random walk. Secondly, every pixel is covered
by many different random walks. Therefore, for every pixel x, there are multiple depth
and orientation hypotheses that are contributed by different random walks which start in the
vicinity of x and which cover x. By collecting this information in the voting space at every
pixel we obtain statistics about the disparities and ideally, the true disparity will receive many
votes from the random walks crossing the pixel.

The voting space V(x,d) can be best understood as a data structure that holds a histogram
for disparity values at every pixel location and is initialized to zero. First, for a given pixel x
of the left image, we collect a set S of relevant depth and orientation hypotheses:

S = {(d,δ ) |CA(x,d,δ )≤ ŝ+NΘ,d ∈ D,δ ∈ ∆} (4)

with ŝ = mind,δ CA(x,d,δ ) and D = [dmin,dmax]. The parameter Θ specifies a small corridor
within which the hypotheses may be located relative to the minimum ŝ, and N is the length
of the random walks.

The second step is to update the voting space with a random walk starting at pixel x
based on simulations using the hypotheses in S. For every hypothesis (d,δ ) ∈ S for the start
pixel x, we update every pixel of the random walk R(x) = 〈ri〉i by simulating the random
walk again with the given depth and orientation prior using: V(ri,di) 7→ V(ri,di)+ 1 with
di = d + δ T (ri− x). Note that for a given random walk, V(ri,di) is updated only once per
pixel (different to CA), even if a pixel occurs multiple times in the walk.
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3.5 Statistical Consistency
By normalizing the values in V for every pixel we obtain a probability for the disparities
at every pixel and allows a statistically motivated consistency measure. For that, we define
the consistency at pixel x as: V(x,d̂)

1+∑i V(x,i) , where d̂ is the disparity with most votes at pixel
x. Please note that by defining the consistency in this way, we assume that there is always
virtually one random walk that is wrong and the value will never be 1.0. By defining it this
way the consistency depends not only on a few (or even only one) random walks. So to
achieve a very high consistency value it is rather required that many random walks confirm
to the same specific disparity. In this sense, the consistency will asymptotically reach 1 if
more and more random walks confirm the same disparity for a specific pixel. Later, we will
analyse this statistical measure in more detail.

3.6 Global Optimization and Propagation into Occluded Regions
Until now we presented a novel cost function which delivers statistics about the likelihood
of every disparity. From these the most probable disparities may be extracted directly using
WTA but in many cases mismatches can be reduced by enforcing a smoothness constraint.
We decided for a recent variational technique [13] based on the second-order total general-
ized variation [6] because of its strengths at slanted surfaces and its practicability. For the
optimization, we use our voting space in their energy functional:

min
u,v

∫
Ω

λs|G(∇u−v)|+λa|∇v|+λdṼ(x,u(x))dx (5)

with u ∈ D|I| the smoothed disparity map to solve for, an auxiliary vector field v, weighting
factors λs, λa, λd and G the anisotropic diffusion tensor, a linear operator that adapts and
directs the amount of regularization locally. The data term Ṽ(x,u(x)) is based on the voting
space V and is defined as Ṽ(x,u(x)) = Vmax−V(x,u(x))

Vmax
.

In occluded areas it is impossible to obtain depth information using binocular correlation.
The common strategy is to identify occluded pixels using the well known left-right consis-
tency check [9]. In our work, if no global optimization is used, implausible disparity matches
may be identified using our statistical consistency measure. In practice we determine for all
those pixels a disparity for which the consistency is greater than a specific threshold and
leave a hole for all other pixels. Then we propagate depth information into the holes by
again using random walks using the framework proposed by Grady [7].

4 Experiments
We use the Middlebury benchmark [16] to compare our method to related works. We used
constant parameters for all image pairs1. It must be pointed out that the memory consumption
is relatively large when naively implemented. In practice, if an approximation is tolerated,
the memory consumption of CA can be dramatically reduced by only storing the minimum
among the orientations (i.e. storing CA(x,d) instead of CA(x,d,δk)). It could even be further
reduced by just maintaining the set S on a per pixel basis. Using parallelization (using
OpenMP on the scanline level) we achieve on the CPU running times that are similar to
many other state-of-the-art methods (20s for a Middlebury pair on a dual Intel X5690).

1With ∆ = {(0,0),(± 1
3 ,0),(±

1
2 ,0),(0,±

1
3 ),(0,

1
2 ),(0,1)}, N = 200, σC = 17.7
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4.1 Analysis of the Statistical Consistency Measure
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Figure 3: Disparity maps of different values of the consistency c and the ROC curve for our
method computed using the definitions in [11].

First, we analyse our novel statistical consistency measure that serves as a confidence
for every disparity value. In order to evaluate the influence of the consistency filtering on
disparity density and matching quality separately, we compute the disparity errors only for
the portion of estimated pixels. We define the disparity density (or fraction of matched pixels)
as the number of estimated disparities (whose consistency is greater than the consistency
threshold) divided by the total number of pixels of the corresponding region.

In Fig. 3a we show a comparison of disparity maps of the dataset Cones that were gen-
erated using different values for the consistency. One key result is that consistency values
towards 100% lead to highly reliable disparity maps. While for a consistency of 94% the
disparity density was relatively small with 29%, it is on the other hand impressive that not
a single pixel was wrongly estimated. In general, it can be seen clearly that occluded pix-
els can be filtered out very well. The overall picture for the occlusion filtering also holds
similarly for many datasets and more details can be found in the supplemental material.

In Fig. 3b we show for the dataset Teddy the ROC curve of our cost function using our
confidence measure and we use the same definitions as in [11]. It can be seen that the
envelope of the graph is relatively close to the ideal ROC curve, which indicates that our
cost function in combination with the statistical confidence is quite reliable. In [11] more
metrics are described such as the Improvement over random selection. While the best value
reported in the paper lies at 0.630 (with a theoretical optimum of 1.0), our method achieves
a value of 0.886. Moreover, the best reported Performance relative to the optimal confidence
was reported as 0.331 (with an optimum of 1.0) while our method achieves a value of 0.601.
Certainly, the values are not directly comparable, because the underlying cost function plays
an important role. However, being clearly better than the best reported numbers in [11] is a
strong argument for the reliability of both our stochastic cost function in combination with
our confidence.

4.2 Analysis of the Stochastic Cost Function
Now we analyze the strengths and weaknesses our cost function (sections 3.1-3.4) and com-
pare to other related methods. So in particular we compare our cost function with a winner-
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Baby3 Oh et al. [15] Yang [21] Bleyer et al. [4] Our Cost Function

Reindeer Oh et al. [15] Yang [21] Bleyer et al. [4] Our Cost Function

Figure 4: Results for the datasets Baby3 and Reindeer. Our cost function refers to the steps
described in sections 3.1-3.4. The first column shows ground truth disparities and left im-
ages. The first and third row show the disparity maps. The second and fourth rows show
the disparity errors: at every method for error threshold 1.0; for [4] and our method we also
include error threshold 0.5 (left is 1.0; right is 0.5). For our method we also include the con-
fidence maps. The rectangles indicate errors: red: similarly colored objects; yellow: slanted
surfaces; blue: inter-object occlusions.

takes-all strategy to [4, 15, 21]. For [15] we obtained disparity maps directly from the authors
and for [21] we used the publicly available implementation. For the comparison between the
cost functions we used disparity maps without hole-filling to make the comparison indepen-
dent of different hole-filling approaches. In Fig. 4 we show disparity maps for Baby3 and
Reindeer and we highlight different challenging regions with differently colored rectangles.
Blue rectangles for inter-object occlusions, yellow for slanted surfaces and red for similarly
colored objects.

The method of Oh et al. [15] captures surface curvature well for small disparity gradients
but errors appear at steeply slanted surfaces. A clear limitation appears also near disconti-
nuities which can be directly seen at Reindeer. Tab. 1 confirms that in difficult images more
errors appear on object boundaries.

We measured the non-local filter of Yang [21] worst in non-occluded regions among the
methods in Tab. 1, which is obviously to due many errors at slanted surfaces. Also visually
the artifacts can be clearly seen in Fig. 4 when looking at the yellow rectangles.

In Fig. 4 we also show results for the method of Bleyer et al. [4] for which we performed
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Table 1: The performance of different methods at the Middlebury benchmark [16]. We tested
our method with and without global optimization (GO).

Algorithm Error Avg. Tsukuba Venus Teddy Cones Baby3 Reindeer
Thresh. Error nocc disc nocc disc nocc disc nocc disc nocc disc nocc disc

Our Method, with GO 0.5 8.77 8.68 17.4 0.96 8.98 5.98 15.0 3.81 9.94 3.61 16.1 2.92 11.8
Our Method, no GO 0.5 8.57 8.64 17.6 2.10 9.91 5.96 14.9 4.32 11.6 3.58 16.1 4.12 14.2
Bleyer et al. [4] 0.5 9.91 15.0 20.3 1.00 7.75 5.66 16.5 3.80 10.2 4.18 16.6 4.73 14.8
Bleyer et al. [4] 1.0 4.59 2.09 9.31 0.21 2.62 2.99 9.62 2.47 7.11 2.90 10.8 3.95 12.3
Our Method, with GO 1.0 4.61 2.17 10.0 0.27 3.49 2.75 8.31 2.18 6.50 2.34 10.9 2.33 10.1
Our Method, no GO 1.0 4.90 2.14 10.1 0.45 3.75 3.16 8.68 2.54 7.49 2.42 11.0 3.19 11.2
Yang [21] 1.0 5.48 1.47 7.88 0.25 2.60 6.01 14.3 2.87 8.10 7.67 15.1 12.3 19.4
Oh et al. [15] 1.0 5.38 1.60 6.44 0.20 2.51 6.15 15.8 2.60 7.48 7.23 14.0 11.2 17.0

10 iterations to achieve a better quality2. Qualitatively and also quantiatively in Tab. 1, our
method compares very well with [4] and this further underlines the potential of random walks
for stereo matching. We also want to point out one detail in our comparison indicated by a
red rectangle together with an illustration of the support weights. At this place, different sim-
ilarly colored objects are present within the matching window and even though an intensity
gradient exists, high support weights are assigned to different objects. Random walks are
more robust than the support weights of [22] in this case, because a random walk is required
to consist of spatially connected, similarly colored pixels.

We also would like to point out that the occlusions are clearly visible as dark “shadows”
in our confidence maps which qualitatively underlines the reliability of our confidence mea-
sure. In practice our results are relatively independent of the randomization. To assess this,
we ran our method 100 times on the same stereo pair with constant parameters and different
random seeds. The standard deviation of the overall disparity error ranged from 0.005% up
to 0.05%. Finally, we present results on standard image pairs and results with global opti-
mization in Fig. 5 and Tab.1. The optimization removes small matching errors and improves
smoothness. On the Middlebury benchmark we currently achieve the 8th place for the error
threshold of 0.5 which is another evidence that our method compares well and that our cost
function can be useful in other stereo methods.

So as a bottomline, our proposed stochastic cost function performs quite well at the
recovery of complex scene geometry which is especially visible at difficult inter-object oc-
clusions. Some weaknesses appear in homogeneous regions (which can be addressed with
global optimization) and at field of view occlusions (which can be addressed with hole-
filling). For more experiments, also on method parameters and method steps, we would like
to refer the reader to the supplemental material.

Books: 6.52% Bowling1: 5.50% Dolls: 3.86% Wood2: 0.88% With GO: 4.98% With GO: 3.94% With GO: 3.20% With GO: 0.62%

Figure 5: Results on Middlebury images [16] for: (first row, left four images) our cost
function with propagation and (first row, right four images) our cost function with global
optimization. In the second row we show disparity maps of our method with and without
global optimization for other images with percentages of disparity error > 1 in non-occluded
regions. Red pixels indicate errors in non-occluded regions; blue pixels in occluded regions.

2In [4] three iterations were used with 35x35 matching windows.
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5 Conclusion
In this paper, we proposed a novel stochastic cost function based on random walks which
enables statistical reasoning on the discovered depth measurements. In particular, we in-
troduced (1) a cost aggregation technique based on random walks which is orientation- and
occlusion-robust, (2) a novel voting technique based on random walks to obtain statistical
information about the disparity likelihood and (3) a strong novel statistical consistency mea-
sure. Finally, in the experiments we show impressive results on challenging stereo images.
Given the obtained results we believe that our cost function together with the confidence is
useful for other stereo methods and is valuable in practical applications.
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