
CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION 1

Hierarchical Cascade of Classifiers for
Efficient Poselet Evaluation

Bo Chen1

bchen3@caltech.edu

Pietro Perona1

perona@caltech.edu

Lubomir Bourdev2

lubomir@fb.com

1 Computation and Neural Systems
California Institute of Technology
California, USA

2 Facebook AI Research,
Menlo Park, California, USA

Abstract

Poselets have been used in a variety of computer vision tasks, such as detection, seg-
mentation, action classification, pose estimation and action recognition, often achieving
state-of-the-art performance. Poselet evaluation, however, is computationally intensive
as it involves running thousands of scanning window classifiers. We present an algo-
rithm for training a hierarchical cascade of part-based detectors and apply it to speed up
poselet evaluation. Our cascade hierarchy leverages common components shared across
poselets. We generate a family of cascade hierarchies, including trees that grow loga-
rithmically on the number of poselet classifiers. Our algorithm, under some reasonable
assumptions, finds the optimal tree structure that maximizes speed for a given target de-
tection rate. We test our system on the PASCAL dataset and show an order of magnitude
speedup at less than 1% loss in AP.

1 Introduction
Poselets [3] have been used to achieve state-of-the-art performance on problems such as
object detection [3], attribute classification [4], fine-grain classification [35], action recog-
nition [21, 34], action detection [27], and pose estimation [21, 33]. While Convolutional
Neural Nets have lead to recent significant gain across multiple vision problems [16, 30],
the current best methods for person detection [5] and attributes of people [36] result from
combining poselets and CNNs.

One of the biggest drawbacks of poselets is their evaluation speed. A typical poselet sys-
tem runs a large number of poselet classifiers, which are linear filters, on scanning windows
of an image. For example, for a typical PASCAL [11] image, the implementation provided
by [3] uses 150 poselets in the person category and performs about 90K ∗150 = 13M classi-
fier evaluations. Running all PASCAL categories on a photo (assuming each consists of 150
poselets) would amount to more than 250M evaluations, which takes three minutes on an
Intel Xeon CPU at 2.67Ghz. This demanding computation is the bottleneck for large-scale
deployment, as many applications require fixed and low max latency, such as the self-driving
car, face correction in cameras, or interactive face tagging.

c© 2014. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Bourdev and Malik} 2009

Citation
Citation
{Bourdev and Malik} 2009

Citation
Citation
{Bourdev, Maji, and Malik} 2011

Citation
Citation
{Zhang, Farrell, and Darrell} 2012

Citation
Citation
{Maji, Bourdev, and Malik} 2011

Citation
Citation
{Yao, Jiang, Khosla, Lin, Guibas, and Fei-Fei} 2011

Citation
Citation
{Raptis and Sigal} 2013

Citation
Citation
{Maji, Bourdev, and Malik} 2011

Citation
Citation
{Wang, Tran, and Liao} 2011

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2014

Citation
Citation
{Sermanet, Eigen, Zhang, Mathieu, Fergus, and LeCun} 2013

Citation
Citation
{Bourdev, Yang, and Fergus} 2014

Citation
Citation
{Zhang, Paluri, Ranzato, Darrell, and Bourdev} 2014

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M {}Gool, Williams, Winn, and Zisserman} 2007

Citation
Citation
{Bourdev and Malik} 2009

2 CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION

To address the computational complexity we develop a hierarchical cascade of classifiers
that quickly filters out background and non-promising poselet types for each scanning win-
dow. Our algorithm organizes the poselet types in a hierarchy, where poselet types similar
in appearance can be filtered out or detected together (Fig. 1). Under certain assumptions,
our algorithm identifies the optimal (fastest) hierarchy for a given target detection rate. Our
experiments on the PASCAL dataset show more than an order of magnitude speedup in the
person category for a small and controllable loss in accuracy. We also demonstrate a loga-
rithmic dependence of the computational complexity on the number of poselet types.

b	
 a	

Figure 1: We can leverage the common appearance shared by different poselet types to train
efficient multi-way classifiers. (a) A front-facing and back-facing poselet have similar ap-
pearance. (b) Poselets capturing completely unrelated body parts can also share similarity.
The oval shape of a profile face, at a crude level, resembles the oval shape of a cropped out
pedestrian figure. Even if two poselets look very different, they may share parts of the pat-
tern. Our algorithm automatically finds such shared patterns (horizontal stripes highlighted
in dashed boxes) and uses them to build classifiers to detect both poselet types together.

Since our algorithm focuses on the complexity in relation to the number of poselet types,
it complements approaches that attempt to reduce the number of scanning windows (e.g. [17,
26]). Moreover, although developed for poselets, our algorithm is general and applicable to
speeding up any part-based detector with a large number of parts such as the Deformable
Parts Model [13] and deep convolutional nets [30]. Poselets are a good setup because of the
large number of part classifiers. In addition, our experiments show that the poselets model
has built-in redundancy which means that our efficient search can lose a large number of the
poselets with very minimal overall reduction in AP at the object level hypothesis.

2 Related Work
Although we are the first to propose learning a hierarchical cascade for speeding up poselets
while providing detection rate guarantees, the literature on speeding up part-based detectors
in general is vast. Here we overview without the intention of being extensive. One common
approach is to reduce detection to a binary classification problem at each sliding window
and use active evaluation [6, 18, 19, 25] to reduce the number of evaluations per window.
These approaches select the best part classifier based on the output of selected classifiers.
The drawback is that the computational cost of selecting the next classifier is typically linear
in the number of parts, thus limiting scalability.

Another family of approaches is cascaded classifiers [2, 9, 14, 28, 32], which performs
cheap classifiers to reject unlikely part hypotheses early. By cleverly adjusting the cascade

Citation
Citation
{Gu, Arbel{á}ez, Lin, Yu, and Malik} 2012

Citation
Citation
{Rahtu, Kannala, and Blaschko} 2011

Citation
Citation
{Felzenszwalb, Girshick, McAllester, and Ramanan} 2010{}

Citation
Citation
{Sermanet, Eigen, Zhang, Mathieu, Fergus, and LeCun} 2013

Citation
Citation
{Chai, Deng, Yang, and Ling} 2004

Citation
Citation
{Karayev, Baumgartner, Fritz, and Darrell} 2012

Citation
Citation
{Koller and Gao} 2011

Citation
Citation
{Platt, Cristianini, and Shawe-Taylor} 1999

Citation
Citation
{Bourdev and Brandt} 2005

Citation
Citation
{Dollár, Appel, and Kienzle} 2012

Citation
Citation
{Fua, Becker, Fleuret, Sznitman, etprotect unhbox voidb@x penalty @M {}al.} 2013

Citation
Citation
{Saberian and Vasconcelos} 2012

Citation
Citation
{Viola and Jones} 2001

CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION 3

procedure, one can achieve substantial speedup with accuracy guarantees [14, 28]. Yet most
cascades treat each part independently, hence the cost scales linearly in the number of parts.
A notable exception is [12] which performs cascades on a hierarchy of part detectors that is
given a priori.

Our algorithm belongs to the group of methods that learns a hierarchical partitioning [1,
8, 15, 22, 31] of part detectors. The hierarchy gives us logarithmic growth in computational
cost. While most methods learn the hierarchy in a greedy, layer-wise fashion (e.g. [1, 15,
22]) our algorithm finds the globally optimal structure within a reasonable search space.

Numerical methods [7, 10, 29] have successfully accelerated the evaluation of linear
filters, but they provide little accuracy guarantee. Alternatively, effective search methods
have been proposed to avoid exhaustive sliding windows [17, 20, 23, 24, 26], which can be
combined with ours to provide further speedups.

3 Cascade Hierarchy
Here we describe the general concept of cascade hierarchy for speeding up part-based detec-
tors. We will adapt it to poselets in Sec. 5.

Consider a scanning window detector that evaluates part classifiers at each window and
collects positive examples, i.e. features computed from a scanning windows with positive
scores, for further processing. The goal of a cascade hierarchy is to recover as many positive
examples with as few evaluations as possible.

A cascade hierarchy (Fig. 2a) is a tree where each node represents a classifier designed
to distinguish between examples of a set of parts P and those of the background class. P
is further partitioned into KP subsets and handled by each of the KP child nodes. We use
P to refer to both the set of parts and the node, whenever the context is clear. Any example
that fails the classifier for P is filtered out from further consideration. The examples that
pass are evaluated by all of P’s children. All examples that reach a leaf are evaluated by the
traditional part-classifiers for all parts at that leaf node.

The following performance metrics are of interest. For a node P , retention rate RP
is the fraction of all examples that pass through, and detection rate dP is the fraction of
positive examples for set P that pass through:

RP
4
=

#Examples go through P
#Examples enter P

, dP
4
=

#Positives go through P
#Positives enter P

(1)

Since the vast majority of examples are negatives, the speed of a single node is inversely
proportional to the retention rate. The speed of a cascade hierarchy can be characterized
using the expected number of examples classified at each node plus the cost of running the
traditional part classifiers on the retained examples (Sec. 4). In addition we can measure
accuracy using the detection rate: at any node P , since the node filters some examples and
passes the rest to the children nodes P ′, the overall detection rate dT (P) of the tree rooted
at P must be the product of the P’s detection rate dP and the expected detection rate of the
children subtrees dT (P ′): dT (P) = dPE[dT (P ′)]. At last, once a classifier is trained for a node
P , we can adjust its threshold to trade-off the retention rate RP and the detection rate dP for
node P: RP is a non-decreasing function of dP .

The accuracy and speed can be affected by three key factors: (1) the tree structure T that
describes the partitioning of parts, (2) the classifiers at individual nodes, and (3) the desired
detection rate of each node. These factors must be orchestrated to maintain a desired overall

Citation
Citation
{Fua, Becker, Fleuret, Sznitman, etprotect unhbox voidb@x penalty @M {}al.} 2013

Citation
Citation
{Saberian and Vasconcelos} 2012

Citation
Citation
{Felzenszwalb, Girshick, and McAllester} 2010{}

Citation
Citation
{Blanchard and Geman} 2005

Citation
Citation
{Deng, Sanjeev, C., and Li} 2011

Citation
Citation
{Gangaputra and Geman} 2006

Citation
Citation
{Marsza{T1l }ek and Schmid} 2008

Citation
Citation
{Tu} 2005

Citation
Citation
{Blanchard and Geman} 2005

Citation
Citation
{Gangaputra and Geman} 2006

Citation
Citation
{Marsza{T1l }ek and Schmid} 2008

Citation
Citation
{Dean, Ruzon, Segal, Shlens, Vijayanarasimhan, and Yagnik} 2013

Citation
Citation
{Dubout and Fleuret} 2012

Citation
Citation
{Sadeghi and Forsyth} 2013

Citation
Citation
{Gu, Arbel{á}ez, Lin, Yu, and Malik} 2012

Citation
Citation
{Lampert, Blaschko, and Hofmann} 2008

Citation
Citation
{Moreels and Perona} 2008

Citation
Citation
{Pedersoli, Vedaldi, and Gonzalez} 2011

Citation
Citation
{Rahtu, Kannala, and Blaschko} 2011

4 CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION

…
	

…
	

…
	

d

CP(d)

d�

C
µ

(1)
1

C
µ

(2)
1

C
µ

(2)
2

C
µ

(3)
1

(d1��)

(d1��) (d1��)

(d1��) . . .

a	
 b	

Figure 2: Cascade hierarchy. (a) Inference: each node is a classifier trained to let through
examples of a set of parts P (represented as shapes within the node). The classifiers are
trained to filter out background examples, but are lenient in letting through parts outside of
P . Thus an example (purple triangle) may go through multiple nodes on the same layer
(e.g. first two nodes on the middle layer). Through paths are indicated with arrows, and
blocked path an upside-down T. (b) Learning with target detection rate d: each node P train
a classifier to guarantee a detection rate of dP = dβ . P incurs an evaluation cost CP(d), and
imposes a new target detection rate d1−β on each children. There are many ways to split
P (listed in three colored boxes), and the split that yields the lowest cost (Eq. 2) should be
chosen as the subtree of P . Computing the exact cost could be done recursively (Eq. 3 and 4)
until a leaf is reached, but would require exhaustively exploring all possible tree structures.
To efficiently find the globally optimal hierarchy, we use branch-and-bound (Algo. 1) that
prunes unlikely splits by estimating upper and lower bounds on the costs.

detection rate. For example, having more child nodes means paying more cost upfront for
evaluating their classifiers, but each child will handle fewer parts and thus their classifiers are
stronger and more efficient. Moreover, the classifier at individual nodes must be efficient to
evaluate and yet effective to distinguish between parts and the background. Finally, a node
P with a low local detection rate dP can drastically filter out examples for its children and
potentially make them faster, but to achieve the overall target detection rate dT (P) it must
also ask its child classifiers to be more conservative and slower.

We propose an algorithm that explores these three factors by considering a discrete set
of possible tradeoffs at each node. Our parameterization is general and allows for building
families of tree classifiers with desired properties. Specifically, if we set KP = |P| for the
root and KP = 1 for the rest of the tree, we recover the traditional cascade. If we constrain
the retention rate RP at any node P such that E[RPKP]≤ 1, then the number of evaluations
at each level of our tree will not increase, which results in a family of trees whose evaluation
time grows logarithmically on the number of parts.

CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION 5

4 Algorithm
We describe the algorithm for learning a cascade hierarchy to achieve the best speedup while
meeting the performance requirements.

Performance constraint. Our cascade hierarchy must guarantee a specific detection rate
d. One way to distribute the detection rate among nodes is to enforce that dP , detection rate
for P is no less than dβ and dT (P ′) for the child nodes P ′ no less than d1−β for β ∈ (0,1].
Therefore dT (P) = dPE[dT (P ′)]≥ d.

Cost function. We would like to minimize the cost function CP(d), the minimum ex-
pected evaluation cost of the subtree responsible for classifying the set of partsP at the target
detection rate d.

Evaluation of the cost function requires considering how P is partitioned and assigned
to the child nodes. Let µ denote one way in which P may be partitioned into distinct sub-
sets, and let µ j denote the j-th set in µ . For example, if parts were numbers, and P =
{1,3,6,7,12}, then a possible partition µ would be {{1,12},{3,6},{7}} and µ2 = {3,6}.

The cost function is defined as:

CP(d) = 1+min
(
CB(d),CE(d)

)
(2)

CB(d)
4
= RP(d)B|P| (3)

CE(d)
4
= min

µ,β∈[0,1)
RP(dβ)∑

j
Cµ j(d

1−β) (4)

where the cost function includes the cost of evaluating the current node classifier (which we
consider one unit cost) and the minimum cost between two choices: brute-force evaluation,
which incurs a cost of CB(d), and node expansion, which costs CE(d)1.

In case of brute-force evaluation the classifier throws away as many examples as possible
before the detection rate drops below d, and fully evaluates all retained windows using all
the |P| part classifiers. Here B is the average cost of fully evaluating a part classifier.

The other option is to expandP to have a subtree of children. We need to pick the optimal
number of child nodes and a partitioning of the parts into those nodes, both encoded by µ .
We also need to pick the optimal tradeoff β between using up some of the allowed detection
rate on our own classifier, vs passing it down to the children2 (see Fig. 2b).

Reducing the state space. The space of all possible trees defined in the previous section
is intractably large. To reduce the state space we make the following assumptions:

• For distributing detection rate among a node and its children, we use the same β

parameter for all nodes. β is learned using cross-validation.
• We restrict the node classifiers to be linear SVMs. The classifiers use only a small

subset of the features from an example and are fast to evaluate (see Sec. 5).
• We restrict the set of possible partitions for µ . Specifically, we use a clustering algo-

rithm that ensures that similar parts fall in the same cluster (see Sec. 5 for similarity
measure and the clustering algorithm). The cluster sizes are balanced.

• We restrict the maximum number of children to 4.

These restrictions reduce the search space to manageable size. At each node the possible
number of child nodes is bounded and small. Furthermore, the depth of the hierarchy is
bounded, as we will see later.

1Both costs depend on P and other variables such as µ and β . These variables are omitted for notational clarity.
2For simplicity here we assume that the detection rate is evenly distributed among all children

6 CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION

Minimizing the cost function. To minimizes the cost function CP(d) for a desired
detection rate d, we use branch-and-bound to search for the optimal hierarchy. In addition,
since each state in the branch-and-bound algorithm corresponds to a full hierarchy, we use
dynamic programming to efficiently compute its cost. The algorithm (Alg. 1) is detailed
below.

Algorithm 1 for finding CP(d)
. Find the min-cost tree for target detection rate d

1: function FINDOPTIMALTREE(d,β)
2: IsOptimal(root)← f alse
3: ImproveEstimate(root,d,∞,β)
4: end function

5: . Increase ĈP until it exceeds Ctarget or the subtree at P is optimal
6: function IMPROVEESTIMATE(P,d,Ctarget ,β)
7: if called for the first time for node P then
8: InitializeTree(P,d,β)
9: end if

10: CB ← RP (d)B|P| . Brute-force cost, Eq. 3
11: while (true) do
12: µ∗ ← argminµ ∑ j Ĉµ j . µ∗ is the currently best split of the children of P
13: ĈE ← RP (dβ)∑ j Ĉµ∗j

. Lower bounds of expand cost, Eq. 4

14: if CB < ĈE then
15: ĈP ← 1 + CB . Brute-force is better
16: IsOptimal(P)← true
17: children(P)← /0
18: return
19: end if
20: ĈP ← 1 + ĈE . Expand is better (so far)
21: if ∀ j, IsOptimal(µ∗j) then
22: IsOptimal(P)← true
23: children(P)← µ∗

24: return . Fully explored P
25: end if
26: if ĈP >Ctarget then
27: return . Met target detection rate
28: end if
29: µ∗j ,µ

∗
k ← the best and second-best child of µ∗

. Work on µ∗j until no longer the best

30: ImproveEstimate(µ∗j ,d
1−β ,Ĉµ∗k

,β)
31: end while
32: end function

33: function INITIALIZETREE(P,d,β)
34: for µ, j do
35: Ĉµ j ← 1
36: IsOptimal(µ j)← f alse
37: end for
38: train SVM for P and compute RP (d) and RP (dβ)
39: end function

CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION 7

At each node P we maintain a lower (optimistic) bound of the cost, ĈP , which we ini-
tialize to 1, as each node must at the very least run its classifier. We also maintain an upper
bound, which is the cost of brute-force evaluation CB (Eq. 3). The core algorithm ImproveEs-
timate repeatedly improves the lower bound of the best subtree Ĉµ j until some other subtree
Ĉµk becomes more promising or the lower and upper bounds meet. Once the two bounds
meet, the subtree Ĉµ j becomes “optimal" as any other partition is guaranteed to be no cheaper
than brute-force evaluation. A subtree is also optimal when all of its possible partitions µ

become optimal. Finally, the algorithm completes when the root node becomes optimal.
The algorithm requires repeatedly updating the cost estimate ĈP using Eq. 2 and 4. To

avoid redundant computation, we cache the classifier and cost estimate at each node so that
both the retention rate RP and the Cµ j ’s in Eq. 2 can be evaluated by a simple lookup.

Analysis. Algorithm 1 converges and returns the optimal cascade hierarchy within
the restricted state space. Optimality of our algorithm follows from the optimality of the
branch-and-bound algorithm. Convergence of our algorithm is straightforward if the max-
imum depth among all cascade hierarchies is bounded, since the search space would also
be bounded. The depth is bounded because every new layer either reduces the number of
parts |P| by at least half, or raises the desired detection rate by a power of 1−β . Each part
classifier has a maximum detection rate d∗ such that brute force evaluation is cheaper than a
traditional cascade. Therefore the total depth is bounded by O(log |P| log(d∗)

(1−β) logd).

5 Cascade Hierarchy for Poselets

In this section we adapt the cascade hierarchy to accelerate the poselet detector.
Stripe classifiers The classifier at each node is a linear SVM with local features called

“stripes". We split the classification window of an example into a series of horizontal stripes,
and classify only based on HOG features from a single stripe. We pick the stripe that best
distinguishes the set of poselet types from the background (see Fig. 5). Our choice is driven
by implementation efficiency, as the horizontal stripes are consecutive in memory in the
HOG feature space. Our model is general and can work with any other features. A systematic
study of the effect of feature choices is interesting but outside of the scope of this paper.

Clustering of similar poselets Recall that one of our simplifying assumptions to ensure
tractability in learning is to restrict the set of partitions µ to only one choice for a given num-
ber of children KP . We provide this partitioning by clustering the poselet types in P into KP
clusters. A good partitioning should cluster similar poselets together so that they can be eas-
ily separated from the background class. We cluster poselet types based on the Mahalanobis
distance between their filters with respect to the best stripe they have in common.

We generate KP clusters of equal size by repeatedly picking the best cluster of size
|P|/KP along with the best stripe associated with the cluster. Fig. 5 shows the result of this
clustering algorithm applied to a subtree.

6 Results and Discussion

We conduct experiments to examine our algorithm’s ability to adapt to different accuracy
requirements, to trade off efficiency with accuracy and to scale to large number of poselets.

8 CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION

6.1 Exploring the effect of detection rate and β

DR=70% DR=80% DR=95% Beta=25.00% Beta=50.00% Beta=75.00%

Figure 3: Left: Learned tree structures on a toy problem with 4 poselets with varying target
detection rate. The depth of the tree shrinks monotonically as target detection rate grows
from 70% to 95%. Right: Learned tree structures on a toy problem with 10 poselets with
varying β for trading off current vs future detection rate. The depth of the tree grows as β

grows from 25% to 75%.

Fig. 3-left shows the resulting tree of the toy problem of classifying four poselets as we
vary the target detection rate. For the high accuracy rates our algorithm prefers to do multi-
way splits and use the maximum number of splits. However, if it is allowed to have lower
detection rate it determines that a single cascade step is best as it can filter out quickly a large
number of the examples.

Fig. 3-right shows the resulting tree of the toy problem of classifying 10 poselets as we
vary β , the tradeoff parameter between current and future detection rate. High β means
the current node is myopic and can afford to evaluate a cascade. However when β is low,
we need to maintain high detection rates ourselves and, if necessary, brute force evaluate
everything, which results in a shallow tree.

6.2 AP as a function of speed

Fig. 4-left shows the average precision of our hierarchical cascade (denoted MaxK=4 since
each node can have at most 4 children) as a function of evaluation speed as measured on
the person category of PASCAL 2007 test set. We compare against the following baselines:
MaxK=k: a cascade hierarchy where each node has at most k children. Downsampling: a
C++ version of a traditional poselet classifier and adjusted the scanning step in X,Y and scale
to achieve the same number of computational units (in our case the cost to compute the inner
product along one horizontal stripe is one unit); Cascades: cascades trained independently
on individual poselets using the same stripe classifiers; Randcluster: a cascade hierarchy
where the partitions at each node are assigned randomly but the tree structure is optimized.

As the figure shows, we can achieve more than 10x speedup at the cost of decreasing
AP by just a single point, whereas simple adjustments to the sampling rate significantly
reduce the accuracy. Grouping similar poselets together is congenial to trading off accuracy
and speed, but of greater importance is having the optimal tree structure (see performance
improvement from MaxK = 2, a binary tree, to MaxK = 4, a tree with a maximum width of
4). Traditional cascades perform well in high accuracy low speedup scenarios, but without
sharing its performance does not translate to high speedup cases. Finally, our model starts
to show signs of over-fitting when the speedup demand is too high (over 1500%). In such
scenarios, random clustering may provide some robustness against prematurely killing an
entire group of poselets with tightly clustered appearance.

CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION 9

43

44

45

46

Ground truth

A
ve

ra
ge

 P
re

ci
si

on
%

43

44

45

46

Ground truth

A
ve

ra
ge

 P
re

ci
si

on
%

0 500 1000 1500 2000

36

38

40

Speedup%

0 500 1000 1500 2000

36

38

40

Speedup%

Downsampling
Cascades
Randcluster
MaxK=2
MaxK=3
MaxK=4

10
3

0

500

1000

1500

2000

2500

Num. Poselets (logscale)

N
um

. N
or

m
al

iz
ed

 O
pe

ra
tio

ns
 %

10
3

0

500

1000

1500

2000

2500

Num. Poselets (logscale)

N
um

. N
or

m
al

iz
ed

 O
pe

ra
tio

ns
 %

Downsampling
MaxK=4

Figure 4: Left: Average precision of our classifier (MaxK=4) on the PASCAL 2007 set for
the Person category as a function of evaluation speed. We compare against the AP of Down-
sampling: standard poselet detector with coarser sampling in space and scale; Cascades:
independent cascades for each individual poselet; Randcluster: cascade hierarchy with ran-
dom partition and MaxK=k: cascade hierarchy where each node can have at most k children.
Right: Computation time for the same detection rate as a function of the number of poselets.

6.3 Speed as a function of the number of poselets
Fig. 4-right shows how our computation time scales as we increase the number of poselets
but keep the same target detection rate. We tested with 150, 300, 600 and 1200 poselets [4].
As expected the traditional poselet classifier scales linearly with the number of poselets, but
due to feature sharing our hierarchical cascade has logarithmic growth curve.

6.4 Performance in seconds

We timed our implementation in C++ of the baseline and one of our models that achieves
45.5AP on PASCAL person category and whose speedup (as determined by the number of
operations) is 1145%. The numbers are in seconds per image on a single-threaded imple-
mentation running on Intel Xeon CPU at 2.67Ghz. The table below shows that the actual
speedup time of around 1035% is in the same ballpark as estimated by the processing unit
count. However, we are, of course bound by Amdahl’s law as the overall total speed of de-
tection depends on other factors (such as feature extraction) which do not improve. Note,
however, that feature extraction time is amortized as we increase the number of categories

Citation
Citation
{Bourdev, Maji, and Malik} 2011

10 CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION

Figure 5: A classification tree generated by our algorithm for classifying 44 poselets at 90%
target detection rate. The thickness of the edges denotes the retention rate of the classifiers.
The number of poselet types classified by each node is indicated. Left corner: A zoom on
part of the tree. At each node we show the average mask over all classifiers captured by the
node, along with the horizontal stripe that was used to classify the node.

and poselets as they reuse the same HOG features. There are a number of engineering
improvements that can be done to further improve the overall performance, such as a multi-
threading it and using more efficient HOG feature generation. These are beyond the scope
of this paper.

Module Baseline @45.5AP

Poselet Detection 11.7s 1.13s
Feature Extraction 2.0s 2.0s
Total Detection 13.8s 3.2s

7 Conclusion

In this paper we develop a technique for efficient joint evaluation of multiple part-based
detectors. Our method is general as it does not depend on the specific choices of classifiers,
features or parts. We provide a branch-and-bound algorithm that determines the most optimal
tree (in our restricted search space) that satisfies a given detection rate.

We applied our algorithm on the task of improving the efficiency of poselet detection
and demonstrated more than an order of magnitude speedup for a small controlled loss
of accuracy, and a logarithmic runtime complexity with regard to the number of poselets.
Taken to the extreme, variations of our method could be used to efficiently evaluate (albeit
at a low detection rate) many thousands of part-based classifiers. This could lead to a largely
unexplored research area in visual object recognition which could be interesting due to the
heavy-tail nature of the patterns associated with visual object categories.

CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION 11

References
[1] Gilles Blanchard and Donald Geman. Hierarchical testing designs for pattern recognition. The

Annals of Statistics, 2005.

[2] Lubomir Bourdev and Jonathan Brandt. Robust Object Detection via Soft Cascade. In CVPR,
2005.

[3] Lubomir Bourdev and Jitendra Malik. Poselets: Body part detectors trained using 3D human
pose annotations. In ICCV, 2009.

[4] Lubomir Bourdev, Subhransu Maji, and Jitendra Malik. Describing people: A poselet-based
approach to attribute classification. In ICCV, 2011.

[5] Lubomir Bourdev, Fei Yang, and Rob Fergus. Deep poselets for human detection. arXiv preprint
arXiv:1407.0717, 2014.

[6] Xiaoyong Chai, Lin Deng, Qiang Yang, and Charles X Ling. Test-Cost Sensitive Naive Bayes
Classification. In ICDM, 2004.

[7] Thomas Dean, Mark Ruzon, Mark Segal, Jonathon Shlens, Sudheendra Vijayanarasimhan, and
Jay Yagnik. Fast , Accurate Detection of 100 , 000 Object Classes on a Single Machine. In CVPR,
2013.

[8] Jia Deng, Satheesh Sanjeev, Berg Alexander C., and Fei-Fei Li. Fast and Balanced: Efficient
Label Tree Learning for Large Scale Object Recognition. In NIPS, 2011.

[9] P Dollár, R Appel, and W Kienzle. Crosstalk cascades for frame-rate pedestrian detection. In
ECCV, 2012.

[10] Charles Dubout and F Fleuret. Exact acceleration of linear object detectors. In ECCV, 2012.

[11] Mark Everingham, Luc Van Gool, Chris K. I. Williams, John Winn, and Andrew Zisserman. The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results, 2007.

[12] Pedro F. Felzenszwalb, Ross B. Girshick, and David McAllester. Cascade object detection with
deformable part models. In CVPR, 2010.

[13] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection
with discriminatively trained part-based models. PAMI, 2010.

[14] Pascal Fua, Carlos Joaquin Becker, François Fleuret, Raphael Sznitman, et al. Fast object detec-
tion with entropy-driven evaluation. In CVPR, 2013.

[15] S. Gangaputra and D. Geman. A Design Principle for Coarse-to-Fine Classification. In CVPR,
2006.

[16] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

[17] Chunhui Gu, Pablo Arbeláez, Yuanqing Lin, Kai Yu, and Jitendra Malik. Multi-component mod-
els for object detection. In ECCV, 2012.

[18] Sergey Karayev, Tobias Baumgartner, Mario Fritz, and Trevor Darrell. Timely object recognition.
In NIPS, 2012.

12 CHEN, et al.: HIERARCHICAL CASCADE FOR POSELET EVALUATION

[19] Daphne Koller and Tianshi Gao. Active Classification based on Value of Classifier. In NIPS,
2011.

[20] Christoph H Lampert, Matthew B Blaschko, and Thomas Hofmann. Beyond sliding windows:
Object localization by efficient subwindow search. In CVPR. IEEE, 2008.

[21] Subhransu Maji, Lubomir Bourdev, and Jitendra Malik. Action recognition from a distributed
representation of pose and appearance. In CVPR, 2011.

[22] Marcin Marszałek and Cordelia Schmid. Constructing category hierarchies for visual recognition.
ECCV, 2008.

[23] Pierre Moreels and Pietro Perona. A Probabilistic Cascade of Detectors for Individual Object
Recognition. In ECCV, 2008.

[24] Marco Pedersoli, Andrea Vedaldi, and Jordi Gonzalez. A Coarse-to-fine approach for fast de-
formable object detection. In CVPR, 2011.

[25] John C Platt, Nello Cristianini, and John Shawe-Taylor. Large margin dags for multiclass classi-
fication. In NIPS, 1999.

[26] Esa Rahtu, Juho Kannala, and Matthew Blaschko. Learning a category independent object detec-
tion cascade. In ICCV, 2011.

[27] Michalis Raptis and Leonid Sigal. Poselet key-framing: A model for human activity recognition.
In CVPR, 2013.

[28] Mohammad Javad Saberian and Nuno Vasconcelos. Learning optimal embedded cascades. PAMI,
2012.

[29] Mohammad Amin Sadeghi and David Forsyth. Fast template evaluation with vector quantization.
In NIPS, 2013.

[30] Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun.
Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv
preprint arXiv:1312.6229, 2013.

[31] Zhuowen Tu. Probabilistic boosting-tree: Learning discriminative models for classification,
recognition, and clustering. In ICCV, 2005.

[32] Paul. Viola and Michael. Jones. Rapid object detection using a boosted cascade of simple features.
In CVPR, 2001.

[33] Yang Wang, Duan Tran, and Zicheng Liao. Learning hierarchical poselets for human parsing. In
CVPR, 2011.

[34] Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai Lin, Leonidas J. Guibas, and Li Fei-Fei.
Action recognition by learning bases of action attributes and parts. In ICCV, 2011.

[35] N Zhang, Ryan Farrell, and Trever Darrell. Pose Pooling Kernels for Sub-category Recognition.
In CVPR, 2012.

[36] Ning Zhang, Manohar Paluri, Marc’Aurelio Ranzato, Trevor Darrell, and Lubomir Bourdev.
PANDA: Pose Aligned Networks for Deep Attribute Modeling. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2014.

