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Abstract

Multi-target tracking techniques increasingly exploit contextual information about
group dynamics. However, approaches established in pedestrian tracking make assump-
tions about features and motion models which are often inappropriate to sports team
tracking, where motion is erratic and players wear similar uniforms with frequent inter-
player occlusions. On the other hand, approaches designed specifically for sports team
tracking are predominantly aimed at detecting game-state rather than using game-state to
enhance individual tracking. We propose a multi-level multi-target sports-team tracker,
which overcomes these problems by modelling latent behaviours at both individual and
player-pair levels, informed by team-level context dynamics. At the player-level, targets
are tracked using adaptive representations, constrained by probabilistic models of player
behaviour with respect to collision avoidance. At the team-level, we exploit an adaptive
meshing and voting scheme to predict regions of interest, which inform strong motion
priors for key individual players. Thus, latent knowledge is derived from team-level con-
texts to inform player-level tracking. To evaluate our approach, we have developed a
new data-set with fully ground-truthed team-sports videos, and demonstrate significantly
improved performance over state-of-the-art trackers from the literature.

1 Introduction
Multi-target tracking remains a significant open problem in computer vision. Many applica-
tions involve video surveillance and pedestrian tracking, but there is a growing interest in the
automatic tracking of players in team sports, e.g. for automated sports commentary [7].

Initially, progress in pedestrian tracking was mostly due to improved target models:
generic appearance models or detectors, dynamic motion models, and better optimization
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strategies [9]. More recently, pedestrian tracking has advanced considerably by formulating
multi-target tracking in terms of data association. Independent motion models have been
implemented to limit the complexity of solutions [4], while inter-correlations have also been
studied between pedestrians using context [2].

Team sport tracking poses three main difficulties [7] which distinguish it from conven-
tional pedestrian tracking: 1) players in team uniforms share similar appearance; 2) motion
changes are abrupt and erratic in contrast to comparatively smooth and linear pedestrian mo-
tions; 3) the motions of two distant players may be highly correlated. Appearance models
alone are not usually sufficient to distinguish team-sport players. Player motion itself can be
discriminating, however players often undergo abrupt motion changes when gaining/losing
possession of the ball. Fortunately, the latent team strategy can provide additional hints for
tracking, i.e. seemingly erratic motion of a single player may actually be consistent with the
overall motion strategy of the team.

Some pedestrian tracking literature, [9], has exploited models of dynamic social be-
haviour to enhance tracking. However, [9] does not explicitly consider the problem of
person-person occlusion which is of central importance to team-sports tracking. Recent
work on sports videos [6] uses multi-player motion fields to enable dynamic scene analy-
sis in football games. However, this work is aimed at extracting a high level understanding
of the game-play from player trajectories, rather than using this knowledge to enhance the
tracking itself. Additionally, while the flow-field approach of [6] works well for football, we
find that it breaks down in other sports such as volley-ball, where player-player correlations
are more complex, yielding highly non-smooth and dis-continuous flow fields. Other recent
work, [7], combines tracklet analysis with higher-level context-conditioned team dynamics
to achieve impressively robust data-association. However, this approach of best-fitting a se-
ries of tracklets to a segment of video-footage is designed for offline video-analytics, rather
than real-time, online frame-by-frame tracking. Related works, [2], [12], also exploit various
kinds of contextual constraints of object motions, however these do not extend to models of
player decision-making and its influence on trajectory priors.

Figure 1: Multi-level tracking algorithm. Level 1: each player tracked by [3]. Level 2:
player-player occlusions handled by player-pair behaviour model. Level 3: group or team-
level context-dynamics gives dominant player trajectory prediction.

We propose a new multi-target tracker which functions on multiple levels or scales of
representation, shown in Fig.1. At the lowest level (Level 1), we track individual players
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using the state-of-the-art LGT "Local-Global" tracker [3].This, itself involves two "layers"
of tracking: a parts-based set of "local" patches (based on intensity distributions), and a
"global" target model (incorporating motion, shape and colour distributions).

The LGT player models (Level 1) are next augmented by an additional model at the
player-pair level (Level 2), which encodes the motion preferences of two or more players in
close proximity, in the form of a probability distribution representing their tendency to avoid
collisions. The pair-wise collision-avoidance model is used to modify the local patch models
and global target models of a target pair: the global motion model is modified by the collision
avoidance model, providing a stronger motion prior; a prediction is made about which local
patches will be occluded during the pair-wise player interaction; and remaining patches are
weighted according to their predicted discriminative power during such interactions.

We next examine the motion of multiple players at the team-level (Level 3). Based on
player positions, provided by the lower tracking levels, we propose an adaptive approach
to meshing the playing area in which the mesh resolution scales appropriately with player
density. A player-voting method is then proposed which computes a region of interest (ROI),
based on the distribution of player locations and their individual velocities. The region of
interest does not necessarily indicate the ball position, but may equally indicate the future
ball position, or some other position of strategic importance, as predicted by the players.
Using this information, it is possible to select one or more "dominant" players, who tend to
move with a clearly identifiable trajectory towards the ROI, with a high degree of confidence.
Since most instances of pair-wise inter-player occlusions involve such a dominant player,
the dominant player trajectories can be used to re-learn the probabilistic motion models
used by the intermediary pair-wise tracking level, as described above. The adaptive mesh-
scaling ensures that the resolution of such trajectory predictions scales proportionately to the
predictive confidence. The main contributions of this paper are:

1) A probabilistic model of collision-avoidance motion strategies at the player-pair level
(Level 2), continuously re-learned online from latent information, context-conditioned by
large-scale motion at the team-level. This is used to augment the global-layer motion-models
of the LGT, and also to modify the local-layer of the LGT trackers, by predicting occluded
parts, and adaptively weighting each target part according to its discriminating power.

2) A method for identifying an ROI, and one or more dominant players, whose trajecto-
ries can be predicted with confidence relative to the ROI. These dominant player trajectories
are then used to condition the collision-avoidance models.

Our method does not rely on training data, background models, any camera calibration,
or "tracking-by-detection". Instead it is initialised merely from a bounding box for each
target in the first frame.

2 Multi-level multi-target tracker

Our multi-target tracker comprises three main levels of reasoning (Fig.1): a player-level
based on a state-of-the-art tracker LGT [3] (itself comprising two sub-levels called local and
global "layers"); a local group-level which models the behaviour of player-pairs; and a global
group-level which reasons about team dynamics.
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2.1 Individual player level (Level 1)
At the level of individual targets, our tracker is based on LGT [3] which is a high-performance
state-of-the-art tracker, with publicly available code and evaluation data [1]. LGT uses an
adaptive two-layer target representation. These local and global layers each provide con-
straints for re-learning the other, which enables stable adaptation.

An individual tracker, Tk, represents a target as a set of global properties: location Lk,
motion Mk, and appearance ζk. The target location is represented by a bounding box Lk =
(xk,yk,wk,hk), where xk,yk are coordinates of the top-left corner, and wk,hk denote the width
and height respectively. Motion Mk = (ẋk, ẏk) denotes velocity of the player’s centroid.

The global appearance model of an individual target can be re-learned from an image
region, defined by set of local parts or patches, which form the local layer of the model. We
later show how to modify these local patches to overcome player-player occlusions. The
global layer provides a 2D distribution over image locations for continually allocating and
learning new local patches:

p(Tk|Lk,Mk,ζk) ∝ p(Tk|Lk)p(Tk|Mk)p(Tk|ζk) (1)

The set of Np local patches Uk = {u
(i)
k }i=1:Npare local distributions of image measure-

ments, ζk, with weights:

W (i)
k = p(ζk,u

(i)
k |Uk) = p(ζk|u

(i)
k )p(u(i)k |Uk) (2)

2.2 Local group-level (Level 2)
A pair of sports players may share similar appearance and interact in close proximity with
each other, making data association very difficult [12]. Our method addresses these problems
by using latent player behaviour models to improve the accuracy of motion models and the
discriminative power of appearance models.

2.2.1 Collision avoidance motion model

Humans typically plan future movements that avoid collisions. Even during contacts, two
players do not physically coalesce, so that a collision avoidance assumption remains effec-
tive. Our collision-avoidance model detects instances of player-pairs, defined by proximity:

`(T m
k ,T n

k ) =

{
1, if

∥∥Lm
k −Ln

k

∥∥
2 < lp

0, otherwise
(3)

where lp is scaled according to the size of the region around each target that the tracker
searches at each frame. Thus, a pairing detection indicates a high risk of the two player’s
trajectories intersecting in the image plane, resulting in occlusion. However: in all sports,
two trajectories can never physically merge on the 2D ground plane; in many sports, players
often deliberately modify their motion to avoid collisions, especially "dominant" players
(e.g. in possession of the ball) who wish to avoid interceptions.

We use a second order motion model, which assumes: i) each player predicts that the
other player will continue with a uniform velocity; and, ii) each player will reduce that
component of his/her own velocity which lies in the other player’s direction to zero before
an expected collision at future time k+∆k. Thus, the nth player will modify their present
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speed V n
k by a deceleration, an

k , to arrive at a modified speed V̂ n
k =V n

k −an
k , in response to the

mth player. This yields two constraints:

∆kV m
k +

(
∆kV n

k −
1
2

an
k∆k2

)
= Ln

k −Lm
k , V n

k +V m
k −∆kan

k = 0 (4)

which are solved for two unknowns, ∆k and an
k , giving:

an
k = (V n

k +V m
k )2/(2Ln

k −Lm
k ) (5)

Predicted player decisions, an
k , am

k for each member of a player-pair enable enhanced mo-
tion predictions, V̂ n

k , V̂ m
k for potential occlusion situations. We use these predicted velocities

to estimate the future position of each patch of each interacting player. Collision avoidance
behaviour can now be represented probabilistically as a motion prior:

p
(

Vk|u
(i)
k

)
=

{
1− e

(
−λMd(i)k /lp

)
, if d(i)

k < lp
1, otherwise

(6)

which can be incorporated into Eq.(2) via a product as: Ŵ (i)
k =W (i)

k p
(

Vk|u
(i)
k

)
. This motion

prior leaves probabilities unmodified for patches which are predicted to remain un-occluded,
but devalues the weighting assigned to likely occlusion patches as a function of their pre-
dicted distance d(i)

k from the occluding player’s centroid. lp is the same parameter which is
used in Eq.(3). λM is a constant.

2.2.2 Predictive enhancement of appearance models

The augmented motion model can be used to predict future positions of each target by:
L̂k = Lk + V̂k. We use this to detect imminent occlusion situations and predict which target-
parts will become occluded. Predicting occluding and occluded states of player-pairs is
relatively easy in team-sports for two reasons: i) sports are predominantly played on flat
surfaces, with homographic mapping to the camera’s image plane; ii) television cameras,
regardless of view-point, pan or tilt-angles, never have an appreciable roll-angle, i.e. the
image-plane x-axis is always parallel to the plane of play. Therefore relative proximity to
the camera of two targets can be determined merely by comparing their y-coordinates. The
occluded parts of the more distant target can now be computed as: R̂mn

k = R̂m
k ∩ R̂n

k , where
R̂m

k and R̂n
k is the occupied 2D region of player m, n respectively. R̂mn

k denotes the overlap
between the player-pair, which ranges from 0-100%.

If part u(i)k is occluded, its weight ω
(i)
k is set to zero. Once more than 60% of a tar-

get becomes occluded, appearance features become unreliable, so we rely solely on the
motion model for target propagation. During occlusions, it is critical to focus attention
on whichever parts of the player models are most mutually discriminating. We therefore
compute a dissimilarity score p

(
Sk|u

(i)
k

)
for each visible player-patch, u(i)k , compared to all

patches
{

v( j)
k

}
j=1:Nv

of the other interacting player:

p
(

Sk|u
(i)
k

)
=

ψ

(
u(i)k

)
Nv

Nv

∑
j=1

[
1−ρ

(
c
(

u(i)k

)
,c
(

v( j)
k

))]
(7)
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where c(.) is the normalized colour histogram of a patch; ρ (.) is the Bhattacharyya dis-
tance [10]; ψ

(
u(i)k

)
labels occluded and un-occluded parts:

ψ

(
u(i)k

)
=

{
0, if u(i)k ∈ R̂mn

k
1, otherwise

(8)

2.2.3 Combining appearance and motion predictions

We now explain how to combine the predictively enhanced appearance model, Sec.2.2.2,
with the collision-avoidance motion-model, Sec.2.2.1. We do this by replacing the 2D target
distribution p

(
ζk|u

(i)
k

)
of Eq.(2) by:

p
(

ζk,Sk,Mk|u
(i)
k

)
= p

(
ζk|u

(i)
k

)
p
(

Sk|u
(i)
k

)
p
(

Mk|u
(i)
k

)
(9)

where p
(

Mk|u
(i)
k

)
is computed from Eq.(6) and p

(
Sk|u

(i)
k

)
is computed from Eq.(7).

2.3 Global group-level (Level 3)
The performance of single-target trackers can be improved by making use of high-level
knowledge of target behaviour. Analogously, multi-target tracking in sports videos can be
improved by utilising semantic-level understanding of the game. In our global player-level
model, we extract latent information about team dynamics and use it to inform motion-priors
for dominant players.

2.3.1 Detecting a region of interest

We now present a concept which we call the "region of interest", or ROI. Unlike other
work [7][6] this does not mean "focus area" or the estimated ball position in the current
frame. Instead it is a more general concept, referring to a location which the players believe
will be of strategic importance in the near future. This may include the present ball posi-
tion, predicted future ball position, or some other region of imminent strategic importance
according to a semantic-level understanding of the game. Players tend to move towards, or
distribute close to, the ROI. Therefore, the ROI can provide prior information about future
player motions. To detect the ROI, we first form a player flow-field for the image, defined as:
Fk =

{
V̄ 1

k , . . .V̄
j

k

}
where (to reduce noise)V̄ j

k = 1
m ∑

k−m
t=k V j

t is the m-frame moving average

of the velocity V j
k of player j at frame k.

Figure 2: forming mesh according to players’ distribution. Green circle: centre of players’
distribution; Red region: potential region of interest.
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Next, we adaptively mesh the image according to the current set of player positions, Fig.
3, by intersecting each player with gridlines in each axis. This simple mesh construction has
a useful adaptive property: when players are spread far apart, the mesh is coarse, and will
yield a low resolution estimate for the ROI position, which reflects the lower accuracy ROI
estimate that can be achieved from a loose player distribution. In contrast, a high local player
density produces accurate ROI estimates, reflected by the fine resolution mesh.

It is observable, in many sports, that a player’s motion is less correlated with the ROI if
their position is far away from it. While players local to the ROI usually move towards it,
more distant players may choose to move away from it to ensure that gaps in the court or
playing field are filled. We model this behaviour by assigning weights for each player’s vote
for each possible cell of the mesh, according to their distance: ω

i j
k = e−λdi j

, where ω
i j
k is the

weight of the jth mesh cell; di j is the distance from the player to the cell; λ is a constant.
The ji j player’s weighted vote for the ith cell is now set proportional to its velocity towards
that cell:

si j
k = ω

i j
k V̄ i

k

(
Li

cell−L j
k

)
/
∣∣∣Li

cell−L j
k

∣∣∣ (10)

where Li
cell is the location of the ith cell and L j

k is the location of player j at frame k. Since
players tend to cluster around the ROI, their distribution provides an additional cue to the
ROI location. Therefore, we also allow the player’s group centroid to contribute a vote:
sic

k = e−λ cdic
, where dic is the distance between the ith cell and the players’ centroid and

λ c is a constant parameter. The overall ROI vote for the ith cell from Np players is: Si
k =

sic
k ∑

Np
j=1 si j

k . The ROI is now selected as that cell with the largest vote.

2.3.2 Detecting and modelling dominant players

We now introduce the concept of dominant players, defined as those closest to and/or mov-
ing rapidly towards the ROI. We observe that dominant player motion is more stable and
predictable than that of other players, who tend to adjust their own motions in response to
dominant player actions. We also observe that most player-player occlusions involve a dom-
inant player. Hence, dominant players yield high confidence motion-priors, which we use to
overcome such occlusions. We detect dominant players as those with high dominance score:

D(i) =

{
e(V̄

iROI
k −λdsdi), if V iROI

k > 0
0, otherwise

(11)

where V̄ iROI
k is the component of player velocity V̄ i

k in the ROI direction, di is distance be-
tween player and ROI, and λds is a constant parameter.

Once detected, dominant player motions are modelled probabilistically:

p
(

Cdom
k |u(i)k

)
= 1− e−

(
λd/
∣∣∣V p_i

k −V̄k

∣∣∣) (12)

where Cdom
k represents confidence in a candidate location for a dominant player’s ith patch,

u(i)k , given the patch-velocity V p_i
k+1 which would have caused this location, and its discrepancy

with the overall player motion. V̄k is smoothed velocity. λd is a constant which controls
sensitivity to motion discrepancies.
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An important additional consideration is the persistence of a player’s dominant status,
and the reliability of the dominant motion model, which decreases with time. We handle this
with an auto-regressive persistence factor Td ∝ ∑

k
i=k−m δ (i), where δ (m) = 1 if the player

is detected as dominant at frame i and zero otherwise. The ideal constant of proportionality
may depend on the characteristics of a particular sport, but we find that a value of 2 works
well for volleyball and football. Td decreases with time, so that the impact of the dominant
motion prior disappears at Td = 0. We can now modify Eq.(9) to include dominant player
dynamics, to evaluate candidate patch locations:

p
(

ζk,Sk,Mk,Cdom
k |u(i)k

)
=
[

p
(

Cdom
k |u(i)k

)]w j
p
(

ζk,Sk,Mk|u
(i)
k

)
(13)

where ω j adjusts the impact of the dominance component of motion prediction as: ω j =

1− e−λt Td , where λt is a constant parameter.

3 Experiments
We evaluate our method on ten different volleyball videos, to show its robustness to ex-
tremely challenging scenes. We also evaluate it on a football sequence, to demonstrate the
generality and transferability of the models to different kinds of sports.

We have chosen BPF, [8], for comparison with our method, because it is an award-
winning tracker designed specifically for team-sports videos. It combines a state-of-the-
art Adaboost detection method with a Particle Filter to add robustness against environment
clutter (e.g. players from opposition team), and (like our method) is a true online tracker.
Additionally we show the different effects of the various innovations described in this paper
by comparing: 1) multiple instances of the original LGT tracker [3]; 2) LGT enhanced
by a "discriminative parts" method inspired from state-of-the-art pedestrian tracker [11],
as described in Sec. 2.2.B; 3) further enhancement by our localgroup− level models; 4)
enhancement by local−and−globalgroup− level models.

The comparison methods, [3], [11] and [8] are a state-of-the-art single object tracker,
multiple people tracker, and dedicated team-sports tracker respectively.

Accuracy ratio ϕk is defined as the overlap between the tracker-output bounding box T TK
and ground-truth box GTk:

ϕk = (T Tk∩GTk)/(T Tk∪GTk) (14)

Once each tracker has been run on our ground-truthed video dataset, we evaluate as fol-
lows. For a range of values of accuracy ratio, ϕk , we evaluate overall tracking performance
according to the following four metrics [5]: False Negative Ratio (FNR); False Positive
Ratio (FPR); Miss Match Ratio (MMR); Multiple Object Tracking Accuracy (MOTA =
1−FNR−FPR−MMR). We then plot MOTA against ϕk for each method. All experiments
use the following parameter values: λM=0.03, λ=0.001, λ c=0.001, λds=0.01, λd=0.1 λt=0.1.

Fig.3 shows examples of our latent behaviour models detecting the ROI and the dom-
inant player. Our method accurately locates the ROI in football video, showing similar
performance to the motion fields approach of [6]. However, motion field approaches are
not suitable for volleyball, where fewer players with more erratic motions cause non-smooth
flow-fields. In contrast, our voting method can reliably detect ROI in volleyball videos also.
The dominant player is identified successfully throughout the football video, with only very
occasional failures (e.g. frame 30, Fig.3) in the much more challenging volleyball sequences.
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Figure 3: Behavior analysis. Red bounding boxes indicate estimated ROI, Black bounding
boxes show a dominant player.

Table 1: Volleyball
Metric LGT LGT+DP LGT+DP+LM LGT+DP+LM+GM BPF [8]
FNR 5.26% 4.66% 3.90% 2.90% 32.49%
FPR 1.27% 1.27% 1.27% 1.27% 1.27%

MMR 16.89% 15.37% 8.69% 7.25% 41.03%

Fig.4 shows the trade-off curves between MOTA and accuracy for each of the methods.
Note, we do not show BPF, [8], on these trade-off curves as its performance is dispropor-
tionately poor (see following analysis in Tab.1 and Tab.2).

Figure 4: MOTA vs accuracy for volleyball (left) and football (right). LGT, discriminant
parts (DP), local group-models (LM) and global group models (GM)

Tab.1 and Tab.2 show how the BPF method, [8], performs very poorly on volleyball and
football videos. We believe this is because BPF relies on simple colour features which are
easily distracted by background clutter (e.g. spectators). Tab.1 and Tab.2 show how MOTA
breaks down into contributing factors: FNR,FPR,MMR. The MMR mismatches arise from
two situations: i) when nearby trackers swap targets and ii) when the lost trackers re-acquire
wrong targets. Therefore, we also analyze the relative values of FNR and MMR.

In volleyball, Tab.1, MMR obtained with the original LGT tracker is much larger than
FNR, indicating that the principle failure mode arises from player-player occlusions. This
in turn suggests that the improved performance of our approach mainly arises from the local
group-level (player-pair) models.

In contrast, for the football game, MMR is much smaller than FNR (see Tab. 2) suggest-
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Table 2: Football
Metric LGT LGT+DP LGT+DP+LM LGT+DP+LM+GM BPF [8]
FNR 11.38% 9.79% 9.52% 3.97% 47.35%
FPR 6.88% 6.88% 6.88% 6.88% 6.88%

MMR 2.65% 2.65% 1.59% 1.06% 12.43%

ing that the main failure mode is due to losing targets - this means that MMR failures arise
mainly from the re-acquisitions of wrong targets. This suggests that we can expect fewer
improvements from the local-player-level models (Level 2) in football, with an improved
performance predominantly due to the global group-level model - because football involves
fewer player-player interactions than volleyball.

Figure 5: Frames 34, 81 of volleyball sequence: LGT (left pair) and our multi-level tracker
(right pair). Green/red bounding boxes denote correct/erroneous tracking respectively.

Fig.5 illustrates the behaviour of our multi-level multi-target tracker in comparison to
multiple instances of the original LGT tracker in the case of interactions among the play-
ers. The group-level models enable successful tracking of interacting/occluding player-pairs
where LGT fails (see the right-most player-pair in the right-most image).

4 Conclusion
Sports-team tracking poses difficult challenges, which require high-level knowledge of team
dynamics and player-player interactions. We have shown how a single tracker, that represents
individuals as combinations of local and global layers, can be extended to exploit latent
information about local and global group behaviours. Multi-level models are powerful, since
different levels of representation show advantages in different tracking contexts that arise in
different kinds of sporting activity.
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