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Abstract

Image-to-Class (I12C) distance firstly proposed in the naive Bayes near-
est neighbour (NBNN) classifier has shown its effectiveness in image clas-
sification. However, due to the large number of nearest-neighbour search,
12C-based methods are extremely time-consuming, especially with high-
dimensional local features. In this paper, with the aim to improve and speed
up [2C-based methods, we propose a novel discriminative embedding method
based on I2C for local feature dimensionality reduction. Our method 1)
greatly reduces the computational burden and improves the performance of
12C-based methods after reduction; 2) can well preserve the discriminative
ability of local features, thanks to the use of I2C distances; and 3) provides
an efficient closed-form solution by formulating the objective function as
an eigenvector decomposition problem. We apply the proposed method to
action recognition showing that it can significantly improve 12C-based clas-
sifiers.

1 Introduction

Local features play a key role in visual recognition, e.g., action recognition. Classification
based on local features is still a challenging task due to the large intra-class variance and
features. Widely-used local feature descriptors including SIFT [16], HOG3D
[11] and HOG/HOF [13] have shown their effectiveness for both image classification and
action recognition. The discriminative ability of local features would greatly influence the
performance of later representation and classification [25]. In the last decade, algorithms
such as the bag-of-words (BoW) model and sparse coding have been extensively exploit-
ed to encode local features as a global representation. The fact is that even images/actions
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belonging to the same class would contain quite a large proportion of dissimilar local fea-
tures, which enlarges the intra-class variance and makes directly comparing local features
not optimal for classification.

Recently, a non-parametric approach named naive Bayes nearest neighbour (NBNN) [3]
was proposed for image classification, in which the image-to-class (I2C) distance is intro-
duced. Being conceptually simple, NBNN has achieved state-of-the-art performance even
comparable with other sophisticated learning algorithms. The success of NBNN is accredit-
ed to the employment of the I2C distance, which has been proven to be the optimal distance
to use in image classification [3]. It is the I2C distance that effectively deals with the huge
intra-class variance of local features. Inspired by the idea of 12C distances, Zhang et al. [27]
proposed object-to-class (O2C) distances obtaining state-of-the-art performance for scene
classification.

However, the performance of the I2C-based methods highly depends on the effectiveness
of local features, because they essentially contribute to the calculation of the I2C distance.
The I12C-based methods will be computationally expensive or even intractable with a huge
number of local features, especially when the local features are high-dimensional. In addi-
tion, the discriminative ability of local features will directly affect the performance of the
I2C distance. For instance, the local features with noise or from backgrounds would degen-
erate the performance of I12C for classification. Therefore, finding a low-dimensional but
discriminative space to represent the local features becomes very attractive, especially for
action recognition, in which the local features typically amount to tens of thousands and are
very high-dimensional.

Dimensionality reduction techniques such as principal component analysis (PCA) can
be used to project the features into a low-dimensional space, which has been exploited in
[51,[10] for image classification and action recognition. Unfortunately, PCA is an unsuper-
vised feature reduction method treating each local feature equally without considering the
label information of images and therefore suffers from being less discriminative in the low-
dimensional space. Unsupervised nonlinear dimensionality reduction (manifold learning)
methods such as Locally Linear Embedding (LLE) [19], ISOMAP [23], Hessian eigenmaps
(HLLE) [6] and Laplacian Eigenmap (LE) [2] suffer from a crucial limitation that the em-
bedding does not generalize well from training to test data. Linearization is a procedure
commonly used to construct explicit maps over new samples, e.g., locality preserving pro-
jections (LPP) [7] and neighbourhood preserving embedding (NPE) [8].

In addition, some local features could be visually similar or shared by images in different
classes which would be misleading for classification. Therefore, the use of conventional dis-
criminative reduction techniques, e.g., linear discriminative analysis (LDA), is suboptimal
because LDA, when applied to local features, attempts to minimize the within class variance
of different local features and maximize the between-class variance of different local fea-
tures together. To address the shortcomings of LDA, Sugiyama [22] proposed local Fisher
discriminant analysis (LFDA) by combining the ideas of LDA and LPP, which, however, is
still not optimal for local feature reduction.

In this paper, we incorporate the 12C distance to propose a novel dimensionality reduc-
tion method to embed high-dimensional local features into a discriminative low-dimensional
space. The use of the I12C distance benefits in two aspects. On the one hand, local features
from one image are treated as a whole and class labels can be directly used for supervised
learning. This increases the discriminative capacity of local features. On the other hand, it
provides an intuitive and effective venue to couple local feature reduction with classification,
which can improve the performance of classification. In the low-dimensional space, local
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features from each image are aligned according to the I2C distances and the I2C distance to
its own class is minimized and the I2C distances to other classes are maximized.

We validate the proposed method for action recognition because the local feature descrip-
tors for actions are always rather lengthy with several hundred even thousand dimensions,
e.g., HOG3D [11]. To the best of our knowledge, this is the first work to address the local,
discriminative feature reduction for action recognition.

Our work contributes in the following aspects: 1) a novel discriminative subspace learn-
ing algorithm based on the [2C distances is proposed for the dimensionality reduction of local
features; 2) after embedding, [2C-based methods are remarkably speeded up and scale well
with a large number of local features and therefore become more attractive in real-world ap-
plications; and 3) we formulate the method as an eigenvector decomposition problem, which
is efficient with a closed-form solution. The remainder of this paper is organized as follows.
We review and discuss the related work in Section 2. The details of the proposed method
are described in Section 3. We show experiments and results in Section 4 and conclude in
Section 5.

2 Related work

The image-to-class (I2C) distance was first introduced by Bioman et al. [3] in the naive
Bayes nearest neighbour (NBNN) classifier. NBNN is a non-parametric algorithm for image
classification based on local features. With the naive Bayes assumption, NBNN is dramat-
ically simple, while in contrast to parametric learning algorithms, NBNN enjoys many at-
tractive advantages. It requires no training stage and can naturally deal with a huge number
of classes. Due to the use of the I2C distance calculated on original local features, NBNN
can get rid of descriptor quantization errors. The core of NBNN is the approximation of the
log-likelihood of a local feature by the distance to its nearest neighbour, which brings about
the image-to-class (I2C) distance. Taking advantage of the I2C distance, several variants of
NBNN have been proposed in the past few years to improve the generalization ability of
NBNN.

In NBNN, local features are assumed to be i.i.d. given the class labels and the proba-
bility density is estimated by the non-parametric Parzen kernel function and can be further
approximated by the nearest neighbour under the assumption that the normalization factor
in the kernel function is class-independent. However, this assumption is too strict and re-
stricts its generalization on multiple features. Towards an optimal NBNN by relaxing the
assumption, Behmo et al. [1] addressed this problem by learning parameters specific to each
class via hinge-loss minimization. The optimal NBNN demonstrates good generalization on
combining multiple feature channels.

A kernelized version of NBNN, termed the NBNN kernel, was introduced by Tuytelaars
et al. [24]. It was shown in their work that the NBNN kernel is complementary to the bag-
of-features kernel. By preserving the core idea of the NBNN algorithm, for each image, the
I2C distances to all classes are computed. Instead of directly classifying the image as the
class with the minimum I2C distance, they concatenated all the 12C distances as a vector,
which can be regarded as a high-level image representation. A linear support vector machine
(SVM) is employed for image classification. The success of the NBNN kernel is largely
attributed to the discriminative representation of an image by the I2C distances to its own
class but also to classes it does not belong to. This representation gains more discriminative
information in contrast to directly using the absolute 12C distance measurement.
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Recently, McCann and Lowe [17] developed an improved version of NBNN, named
local naive Bayes nearest neighbour (LNBNN), which increases the classification accuracy
and scales better with a larger number of classes. The motivation of local NBNN stems from
the observation that only the classes represented in the local neighbourhood of a descriptor
contribute significantly and reliably to their posterior probability estimation. Specifically,
instead of finding the nearest neighbour in each of the classes, local NBNN finds in the
local neighbourhood k nearest neighbours which may only come from some of the classes.
The "localized" idea is shared with localized soft assignment coding (LSC) [15] in the BoW
model and locality-constrained linear coding (LLC) [26] in sparse coding.

A pooled NBNN kernel has also been introduced by Rematas et al. [18] to enhance
the NBNN kernel. NBNN can be regarded as performing max pooling (finding the nearest
neighbour) over the receptive field in the feature space associated with each class, which
leads to the image-to-class (I2C) distance. Based on this understanding, they generalized
the max pooling in NBNN to propose the image-to-subclass and image-to-word distances,
which improves both the image-to-image and image-to-class baselines.

In terms of local feature reduction, our method is closely related to the work in [10], [4],
[9]. PCA-SIFT by Ke et al. [10] is the first attempt to address the dimensionality reduction
for local features. PCA was applied to project the gradient image vector of a patch to obtain a
more compact feature vector, which is significantly shorter than the standard SIFT descriptor.
Discriminative local feature reduction has been explored in [9] and [4], both of which use
the same covariance matrices of pairwise matched distances and pairwise unmatched feature
distances to find the linear projection. It is demonstrated in [4] that the projection directions
are the same in their methods, although the approaches used are different.

3 I2C distance-based discriminative embedding

We first revisit the image-to-class (I2C) distance based on which our algorithm is built, and
then describe the proposed 12C-based discriminative embedding (I2CDDE) in details.

3.1 Revisit of I2C distances

The image-to-class (I2C) distance was first defined in the naive Bayes nearest neighbour
(NBNN) classifier. NBNN is an approximation of the optimal MAP naive-Bayes classifier
under some assumptions.

Given an image Q represented as a set of local features, xi,...,X;,...,Xy, where x; € RP
and D is the dimensionality of local features. Taking the assumption that the class prior p(C)
is uniform, MAP can be simplified as the maximum likelihood (ML) classifier:

C = argmax p(C|Q) = argmax p(Q|C). (1)

Under the naive-Bayes assumption that X, ...,X;,...,Xy are i.i.d. given the class C, we have:
N

p(QIC) = p(x1,....,xn|C) = [ p(xi[C), 2
i=i

where p(x;|C) can be approximated using the non-parametric Parzen density estimation.
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The Parzen likelihood estimation of the probability of x from class C is:
1 & c
PXIC) =7 L K(x=x)), (3)
j=

where L is the number of local features from class C.

By further assuming that the kernel bandwidths in the Parzen function are the same for all
the classes, the likelihood can be simplified using the nearest neighbour. The summation of
all the distances from the local features of an image to their corresponding nearest neighbours
in each class is defined as the Image-To-Class (I12C) distance, which can be calculated by:

D =Y |lx—NN‘(x)|, 4)

xeX

where NN°€ is the nearest neighbour of x in class c. The resulting classifier takes the form as:

¢ = argmin DY, (5)
c

3.2 Discriminative embedding

Our task is to classify a collection of videos {X;}, each of which is represented by a set of
local features: {X;i,...,Xjj,...,Xjm, }, Where m; is the number of local features from image
X;. Given a video X;, its I2C distance to class c is computed according to Eq. 4 as:

mn;
Dy =Y [Ixij — x|, (6)
j=1

where xj; is the nearest neighbour in class c.

We aim to find a linear projection W € RP*? to embed the local features into a lower-
dimensional space RY.

Proposition. Define an auxiliary matrix AX;. as:

AXie = (Ax§y, . AxG, . AXS, ), (N
where Ax;; = x;j — x;;, therefore the I2C distance in the low dimensional space projected by
W becomes:

D, = Tr(W'AX;c AX;E W), (8)

The proof of this proposition will be given in the Appendix.
Unlike the methods in [9], [4], our aim in the embedded space is to minimize the I12C
distances from images to the classes they belong to while simultaneously maximizing the
I2C distances to the classes they do not belong to. The objective function we used takes the

form as:
Tr(E, ) & WX AXTW) Tr(WI(E, i AXinAX)W)

W* = arg max T T = argmax = -
W Te(X W AX;pAX;p W) W Tr(W (L AXipAX;p)W)

,(9)

where AX;p is the auxiliary matrix associated with the class (positive class) that image X;
belongs to and AXj, is with the class (negative class) that image X; does not belong to. Note
that, given a dataset, the number of negative classes ; is the same for all images.



6 X. ZHEN, L. SHAO, F. ZHENG:

Original Local Feature Space Embedded Intrinsic Local Feature Space

12CDDE

Figure 1: Illustration of the discriminative embedding based on the 12C distance. Action classes are
represented by the ellipses in which the rectangles denote local patches from frames (Classes 1, 2 and
c represent ' Boxing’, ’Handwaving’ and ’Running’ from the KTH dataset, respectively). The length of
the red bars indicates the dimensionality of the local features. The color bars are the I2C distances. D%
is the I12C distance from the action X to class c. Df( is the 12C distance in the embedded space.

We can now seek the embedding W* to maximize the ratio in Eq. 9. The above equation
can be rewritten in terms of covariance matrices as:

Te(WT
W* = arg max (W _CyvW)

W Tr(WICpW)’ (10

where Cy = Y| ¥, AX;,AX], and Cp = ¥; AX;pAX p.
It can be seen that maximizing the objective function in Eq. 10 is a well-known eigen-
system problem [4]:

CyW = 1CpW (11)

The linear projection is composed of d eigenvectors corresponding to the d largest eigen-
values Ay,...,A4. The whole procedure of the embedding is illustrated in Fig 1.

3.3 Neighbourhood relaxation

Due to the noisy local features, e.g., local features from backgrounds and shared by similar
actions, the 12C distance using the nearest neighbour (NN) would not be reliable and the
assumption that the nearest neighbor is preserved during the projection will be too strict. To
relax this, we incorporate locality (using K nearest neighbours) in the objective function,
which is to preserve the local structure of features in the reduced space. We will show exper-
imentally that this modification can improve the performance especially on more complex
datasets, e.g., HMDBS51, in which the backgrounds are quite complicated and local features
are extremely noisy. With the neighbourhood relaxation, the D in Eq. 6 is replaced by:

K m;

Dix =Y, Y IIxij— x50, (12)
k=1 j=1

where xl & is the k-th nearest neighbour of x{; in the c-th class and K is the number of
nelghbours The objective function in Eq. 10 needs also to be updated accordingly.
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3.4 Computational complexity

A key deficit in 12C-based methods is the heavy computational burden resulting from the
nearest neighbour search, which is extremely expensive especially when local features are
high-dimensional. I2CDDE can greatly reduce the computational cost and at the same time
even enhance the discriminative ability of local features. At the test stage, the computation-
al complexity in the original space is O(NMD?), where N is the number of local features
from a test sample, M is the total number of local features in the training set and D is the
dimensionality of local features in the original space. After the embedding, the computa-
tional complexity is reduced to O(NMd?), where d (d < D) is the dimensionality of local
features in the embedded space. Take the local descriptor in action recognition for instance,
we use the HOG3D descriptor. The dimensionality in the original space is 1000 while in the
embedded space it is only tens of dimensions. The computational complexity in the reduced
space is d?/D? = 107 /1000% = 1/10000 of that in the original space.

4 Experiments and results

Although our method can be used for both image classification and action recognition, we
choose to validate our method for action recognition because local features used in action
sequences are of much higher-dimensional than those, e.g., SIFT, in the image domain. We
comprehensively evaluate I2CDDE for action recognition. Experiments are conducted on the
benchmark KTH dataset, the realistic UCF YouTube and HMDBS51 datasets. We compare
the performance of [2CDDE with typical dimensionality reduction methods including PCA,
LDA, LFDA, LPP and NPE, and also show the improvement of I2C-based methods including
NBNN, local NBNN and the NBNN kernel. LDP is not included for comparison due to the
unavailability of ground truth (matched and unmatched local features) for action datasets.

4.1 Datasets and settings

The KTH dataset [20] is a commonly used benchmark action dataset with 2391 video clips
and six human action classes including walking, jogging, running, boxing, hand waving and
hand clapping, performed by 25 subjects. We follow the experimental setup [20].

The UCF YouTube dataset [14] is challenging due to large variations in camera motion,
object appearance and pose, object scale, viewpoint, cluttered background and illumination
condition. This dataset contains a total of 1168 sequences with 11 action categories. We
follow the experimental settings in [14].

The HMDBS51 dataset [12] contains 51 distinct categories with at least 101 clips in each
for a total of 6766 video clips extracted from a wide range of sources. It is a challenging and
realistic dataset for action recognition. As in [21, 28, 29], we test our algorithm on a subset
of this dataset, i.e. the general body movements with 19 action categories. We follow the
experimental setting in the original work [12] using three training/test splits.

We utilize Dollar’s periodic detector [5] to detect spatio-temporal interest points (STIPs)

and the three-dimensional histograms of oriented gradients (HOG3D) [11], which is descrip-
tive and relatively compact with 1000 dimensions, is used to describe STIPs.
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Figure 2: The performance of I2CDDE with different numbers of nearest neighbours on the KTH (the
top row), UCF YouTube (the middle row) and HMDBS51 (the bottom row) datasets. Blue lines are the
baselines of NBNN, local NBNN and the NBNN kernel without dimensionality reduction, and yellow
lines are I2CDDE with the nearest neighbour (INN).

4.2 Results

The performance of I2CDDE for action recognition with different dimensions on the K-
TH, UCF YouTube and HMDBS51 datasets are plotted in Fig. 2. On all the three datasets,
we observe that the performance of NBNN, local NBNN and the NBNN kernel has been
dramatically improved. On the KTH dataset, the increase on the NBNN kernel is more sig-
nificant than NBNN and local NBNN, while on the UCF YouTube and HMDB51 datasets,
the improvement over NBNN and local NBNN is much more remarkable than that over the
NBNN kernel. Note that the superior performance of I2CDDE can be achieved with the
local features of less than 60 dimensions, which manifests the effectiveness of I2CDDE for
dimensionality reduction of local features.

We have also investigated the effects of different numbers of nearest neighbours on the
performance of the neighbourhood embedding. As shown in Fig. 2, on the KTH dataset, the
performance of the neighbourhood embedding is comparable with the baseline 2CDDE with
the nearest neighbour. On the realistic datasets including UCF YouTube and HMDBS51, the
benefit of incorporating neighbourhood turns to be more significant, especially on HMDBS51.
This is expected and reasonable because the KTH is relatively easy with simple actions
and clear backgrounds, while HMDBS51 contains rather complicated actions and clutters in
background. Note that NBNN, local NBNN and the NBNN kernel with neighbourhood
embedding are all largely improved over the baseline with the nearest neighbour.
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Methods NBNN Local NBNN NBNN Kernel
No Reduction 16.4s 8.4s 22685.3s
Reduction 0.9s 0.6s 365.4s

Table 1: The run time before and after applying 2CDDE (d=30).

| KTH HMDB51  YouTube |

I2CDDE 929 38.7 71.7

PCA 91.7 35.6 58.6

NBNN LDA 82.9 31.6 54.3
LFDA 86.6 29.6 63.1

LPP 92.8 34.4 56.8

NPE 91.9 34.8 55.6

Original ~ 93.9 31.8 57.8

I2CDDE 93.5 38.2 73.9

PCA 91.8 35.7 58.7

LNBNN LDA 83.3 31.4 56.5
LFDA 86.8 28.5 71.7

LPP 93.3 35.2 60.9

NPE 92.6 34.9 60.9

Original  94.1 33.1 60.1

I2CDDE  92.0 30.2 60.9

PCA 89.8 25.8 53.6

NBNN Kernel |1 pa - 133 13.1 239
LFDA 67.4 10.2 23.9

LPP 91.0 28.3 58.7

NPE 91.0 27.9 57.4

Original ~ 89.2 29.8 62.4

Table 2: The comparison of 2CDDE with other reduction methods. Note that the results listed in
the table are the accuracies (%) achieved by the methods with 30 dimensions (except for LDA and
LFDA).

4.3 Run time

Since one of the key contributions of I2CDDE is to speed up the I2C-based methods in-
cluding NBNN, local NBNN and the NBNN kernel, we have compared the run time (in
seconds) to classify a test sample before and after using [2CDDE, which is shown in Table
1. The I2C-based methods are dramatically faster after dimensionality reduction. The run
time after reduction is calculated by setting reduced dimensionality as 30 for each method
and experiments are conducted on the KTH dataset.

4.4 Comparison with other dimension reduction methods

We have also compared I2CDDE with widely used linear dimensionality reduction methods
including PCA, LDA, LFDA, LPP and NPE, in Table 2. As expected, [2CDDE uniformly
outperforms the compared methods. PCA, LPP and NPE are unsupervised without using the
label information and therefore tend to be less discriminative for classification. LDA and
LFDA discriminatively learn the projections by labeling the local features with the label of
the image that it belongs to, which, however, could mislead the classifier as discussed in
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Section 1. We can see that for the NBNN kernel, they even fail to produce reasonable results
for all the three datasets. In I2CDDE, the I2C distance actually creates a bridge between the
class labels and local features (by using I2C distance), providing an effective and intuitive
venue to impose the discriminative information on local features, and therefore can improve
the performance of classification.

5 Conclusion

In this paper, we have proposed a method named image-to-class distance-based embedding
(I2CDDE) for dimensionality reduction of local features. The experimental results on the
KTH, UCF YouTube and HMDBS51 datasets have demonstrated that [2CDDE can signifi-
cantly improve the performance of previously proposed I12C-based methods including NBN-
N, local NBNN and the NBNN kernel. More importantly, I2CDDE dramatically speeds
up these methods, which could boost 12C-based methods for large-scale applications. In
addition, [2CDDE uniformly outperforms the classical linear dimensionality reduction tech-
niques such as PCA, LDA, LFDA, LPP and NPE, which further validates the effectiveness
of I2CDDE.

6 Appendix

Proof.

m;
Dx— ZHWTXU Wix; HZZ Z(W x;j — WIx{ ) (Whxi; — Wx; 7)
j=1 j=1
m; m;
= Z(XU—X ) TWWT( (xij —x{}) ZTr x,j—x )(x,j—xl‘j)TW)
Jj=1
m;

= TI‘(WT Z (X,’j —X;‘J-)(Xij — )TW) (13)
j=1

Substitute AX;. into Eq. (13), we have the 12C distance: ﬁg(i = Tr(WTAXiCAXl{W).
O
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