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Abstract

In this paper, we investigate and exploit the influence of facial expressions on auto-
matic age estimation. Different from existing approaches, our method jointly learns the
age and the expression by introducing a new graphical model with a latent layer between
the age/expression labels and the features. This layer aims to learn the relationship be-
tween the age and the expression and captures the face changes which induce the aging
and the expression appearance, and thus obtaining expression-invariant age estimation.

Conducted on two age-expression datasets (FACES [4] and Lifespan [10]), our exper-
iments illustrate the improvement in performance when the age is jointly learnt with ex-
pression in comparison to expression-independent age estimation. The age estimation er-
ror is reduced by 14.43% and 37.75% for the FACES and Lifespan datasets respectively.
Furthermore, the results obtained by our graphical model, without prior-knowledge of
the expressions of the tested faces, are better that the best reported ones for both datasets.

1 Introduction
Automatic age estimation is an important research field in the area of computer vision and
has many applications such as human-computer interaction, security, and surveillance. In
general, the human age is derived from facial aging cues. The aging of adults is primarily
perceived via skin changes [6]. During aging, the human face loses collagen beneath the skin
leading to thinner, darker, and more leathery skin [6]. Age-induced facial wrinkles become
more distinct as a result of repeated activation of facial muscles and they start to appear in
different directions depending on these muscles [2]. For example, vertical wrinkles intensify
between the eyebrows while horizontal wrinkles become more apparent close to the eye
corners.

External factors like facial expressions cause changes in facial muscles which distort
the aging cues. A facial expression is explained by a combination of these changes in the
face which are called Action Units [5]. A problem in age estimation is that expression-
related muscles overlap with aging-induced facial changes. For example, smiling involves
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the activation of some facial muscles leading to raising the cheeks and pulling the lip corners.
This influences the aging wrinkles around the mouth and near the eyes. Consequently, the
aging cues changes caused by expressions show the necessity of separating the influence of
expression when estimating the age.

Most of the existing age estimation methods assume that faces show little or no expres-
sions and ignore the changes of the face appearance induced by them. Guo et al. [7] study
human age estimation under facial expression changes. Their method learns the correlation
between two expressions at a time (e.g. neutrality and happiness). To predict the age across
two expressions, the face is mapped from one expression (e.g. happiness) to another (e.g.
neutrality). Next, the age is predicted from the “mapped” face. For the face aging representa-
tion, Biologically-Inspired Features (BIF) [8] and Marginal Fisher Analysis (MFA) are used.
Zhang et al. [18] employ a weighted random subspace method to solve cross-expression age
estimation. In their method, several feature sets are generated first, then subspaces are built
for these sets. Next, a classifier is learnt for each subspace and predictions of all classifiers
are fused to produce the final prediction. Their method does not require different expressions
from the same subjects as opposed to [7]. However, both methods [7, 18] require the expres-
sions of test images to be known before predicting the age which limits their applicability.

In this paper, we propose a different approach. Instead of learning the age across two
expressions, we jointly learn the age and expression and model their relationship. The aim is
to achieve expression-invariant age estimation. In our approach, one model is learnt for all
expressions. To predict the age, the age and expression are inferred jointly, and hence prior-
knowledge of the expression of the test face is not required. More specifically, we introduce
a new graphical model which contains a latent layer between the age/expression labels and
the facial features. This layer captures the relationship between the age and expression.
During training, the age and expression variables are observed. This allows the latent layer to
learn the configurations which map the features to the age for different expressions and thus
obtaining expression-invariant age estimation. For testing, the age and expression labels are
unknown and the method finds the values of age, expression and latent layer which together
maximize their compatibility with the features.

The contributions of our work are: 1) we show how age-expression joint learning im-
proves the age prediction compared to learning independently from expression. 2) As op-
posed to existing methods, the proposed method predicts the age across different facial ex-
pressions without prior-knowledge of the expression labels of the test faces. 3) Finally, our
results outperform the best reported results on age-expression datasets (FACES and Lifes-
pan).

2 Algorithm

The proposed graphical model aims to jointly learn the relationship between age and expres-
sion. To this end, an inter-connected latent layer is introduced. The latent variables encode
the changes in face appearance. These variables are not explicitly defined, but learnt from
the training data.

The graphical model has four sets of connections: First, connections between the face
subregions and the latent variables. These connections are designed to capture the changes
of face appearance related to age and expression. Second, connections between the face
subregions and the age/expression labels are formed. The aim here is to directly infer the
age/expression from the features. Third, connections between the latent variable modeling
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the relationship between the face subregions. Finally, connections are established between
the latent variables, the age, and the expression. The last type of connections is designed to
relate the age with the expression which allows the joint learning between them. Next, we
discuss the model formulation and explain the inference and learning techniques.

2.1 Model Formulation
Suppose we have N training samples (images) {s1 = (x1,y1),s2 = (x2,y2), ...,sN = (xN ,yN)}
where xn represents the features for sample sn and yn = {ya,n,ye,n} ∈ Y =A×E denotes the
age and the expression labels. A and E are the age and the expression spaces, respectively.
The image is uniformly divided into four (2× 2) sub-regions. The feature vector extracted
from each sub-region xi is connected to the corresponding hidden variable hi. Hence, the
sample feature vector consists of four sub-region vectors xn = [x1,x2,x3,x4] and the corre-
sponding latent layer is denoted by hn = [h1,h2,h3,h4] ∈ H4, where H is the space of the
latent variable state.

Figure 1: Our graphical model to jointly learn the age and the expression. x represents
the feature vector, h denotes the latent variables, ya and ye are the corresponding age and
expression respectively. Note that, while all xi are connected with ya and ye, we do not show
these connections in this figure for the sake of clarity.

The aim is to learn the mapping between the features x and labels y. Our model maxi-
mizes the conditional probability of the joint assignment of y given observation x:

y∗ = argmaxyP(y|x;θ). (1)

Where:

P(y|x;θ) = ∑
h∈H

P(y,h|x;θ) =
∑h∈H exp(ψ(y,h,x;θ))

∑y′∈Y,h∈H exp(ψ(y′ ,h,x;θ))
.

Where ψ(.) is the potential function which measures the compatibility between the (ob-
served) features, the joint assignment of the latent variables, and the output labels. In the
next section, the potentials are defined.
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2.2 Potentials

The potentials measure the compatibility of the joint assignment of different variables:

ψ(y,h,x;θ) =
4

∑
i=1

ψ1(ya,xi;θ
1
i )+

4

∑
i=1

ψ2(ye,xi;θ
2
i )+

4

∑
i=1

ψ3(hi,xi;θ
3
i )+ψ4(h,ya,ye;θ

4).

(2)
In our model, four types of potentials are used. Hereafter, we explain each one of them.
Potential ψ1 models the compatibility of the features and the age:

ψ1(ya,xi;θ
1
i ) = θ

1
i φ1(ya,xi), (3)

where φ1(ya,xi) represents the feature mapping function encoding the features of the joint
assignment of ya and xi. The length of φ1(ya,xi) is equal to the length of xi multiplied by the
cardinality of ya. In case there are S different ages and the feature vector xi has K features,
the size of θ 1

i will be S×K. The mapped feature vector is given by:

φ1(ya,xi) = [ 0...0︸︷︷︸
K×(ya−1)dimension

xT
i ...0]. (4)

The model turns into a multi-class SVM for age estimation when solely this potential is
utilized with the maximum margin method. Multi-class SVM is used as a baseline in this
paper. This potential models the global mapping between the input features and the output
age prediction.

Potential ψ2 models the compatibility of the features and the expression:

ψ2(ye,xi;θ
2
i ) = θ

2
i φ2(ye,xi), (5)

where φ2(ye,xi) encodes the features of the joint assignment of ye and xi and is defined in the
same way as in equation 4.

Potential ψ3 models the compatibility of the observation and the latent states:

ψ3(hi,xi;θ
3
i ) = θ

3
i φ3(hi,xi). (6)

Here, φ3(hi,xi) encodes the features of the joint assignment of the latent variable hi and
the features xi. The latent variables capture the changes of face appearance. For example,
a hidden state could represent whether the mouth is open (e.g. happy) or frowning (e.g.
angry). Thus, the potential ψ3(hi,xi;θ) learns the mapping of the observed features to the
appearance changes.

The potential ψ4 models the compatibility between the age, the expression, and the latent
layer:

ψ4(h,ya,ye;θ
4) = θ

4
φ4(h,ye,ya). (7)

φ4(h,ye,ya) represents the feature mapping function which encodes the features of the joint
assignment of h, ye and ya. The length of φ4(h,ye,ya) is the multiplication of the cardinalities
of h, ye and ya. The element corresponding to the assignment of h, ye and ya is set to be 1
while all other elements are set to be 0.
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2.3 Inference and Learning
Inference: Given the model parameters θ , the inference involves a combinatorial search of
the joint assignment of h, ye and ya which results in the maximum conditional probability:

(ŷ, ĥ) = argmaxy∈Y,h∈Hψ(x,y,h;θ). (8)

Since the proposed graphical model contains loops, it is intractable in general to perform the
maximization. However, by collapsing all the latent variables h with the output variables ye
a new potential factor is obtained. In the same way, by collapsing all the latent variables h
with the output variables ya we get another new potential factor. Then the model becomes a
chain structure and dynamic method is used to solve the maximization problem [11].

Learning: To learn the parameters θ , we exploit the max margin approach [14]. Since
the latent variables h are not labeled in the training set, we need to solve the following latent
structure SVM problem:

min
θ ,ξ

{
1
2
‖θ‖2 +C

N

∑
i=1

ξi

}
(9)

s.t. ∀i ∈ {1,2, . . . ,N},∀y,∀h ∈H :
ξi ≥ ∆(yi,y)+ψ(y,h,xi;w)−ψ(yi,h

∗
i ,xi;θ).

Where ψ(.) is the potential function as described in equation 2. h∗i is the optimum state
under the current parameter. The loss function ∆(yi,y) is defined as the following:

∆(y, ŷ) =
{

|ya− ŷa| i f ye = ŷe
1+ |ya− ŷa| i f ye 6= ŷe

. (10)

This optimization problem is non-convex. Following [16], we use the CCCP concave-convex
framework [17] to solve it. More details of the CCCP procedure can be found in [16, 17].

3 Experiments
The goal of the proposed approach is to capture the relationship between the age and expres-
sion and, hence, alleviate the influence of expression in age estimation. In this section, we
conduct a number of experiments to validate our model using the age-expression datasets
FACES [4] and Lifespan [10].

3.1 Datasets
The publicly available age estimation datasets like FG-NET [1] and MORPH [13] contain
mostly neutral faces. The non-neutral faces in those datasets are not expression-labeled.
Therefore, to evaluate expression-invariance age estimation, we use other datasets: FACES
and Lifespan, which are recently introduced to the computer vision community [7]. FACES
dataset contains face images of 171 subjects showing 6 basic expressions: neutrality, hap-
piness, anger, fear, disgust, and sadness. Every subject shows all the expressions resulting
in 1026 = 171× 6 face images. The faces in the dataset are frontal with fixed illumination
mounted in front and above of the faces. The ages of the subjects range from 19 to 80. The
age distribution is not uniform and in total there are 37 different ages.
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The Lifespan dataset is a collection of faces of subjects from different ethnicities showing
different expressions. The expression subsets have the following sizes: 580, 258, 78, 64,
40, 10, 9, and 7 for neutrality, happiness, surprise, sadness, annoyed, anger, grumpy, and
disgust, respectively. The ages of the subjects range from 18 to 93 years and in total there
are 74 different ages. The dataset has no labeling for the subject identities. We follow the
setup of [7, 18] and use the neutral and the happy subsets. Although the age distributions
of both datasets cover a wide range of ages, the FACES dataset is more challenging for age
prediction since its expression variation (six expressions) is larger than the one in Lifespan
dataset (two expressions).

For feature extraction, eye centers are first automatically detected and the faces are reg-
istered and cropped. Then, the faces are divided into 8×8 patches and a local feature vector
is extracted for each patch. Finally, the patch local descriptors are concatenated together
to form the face descriptor. To extract the features from each patch, we use Local Binary
Pattern (LBP) [12]. It is a simple, efficient, and rotation-invariant approach and successfully
used for age prediction to capture the skin texture details [2, 15]. In our experiments, we use
8 sampling points with a radius equal to 1.

As in previous setups [7, 18], the datasets are divided into 5 folds. For the FACES dataset,
the expression distributions are uniform for all the 5 folds, and none of the subjects appears
in more than one fold. For the Lifespan dataset, the dataset (neutral and happy) is split
randomly into 5 folds. As the subject identities are not available, a subject overlap between
the training and the test samples is possible. The results are measured quantitatively by Mean
Absolute Error (MAE) 1

N ∑
N
n=1 |yn

a− ŷn
a| . Where yn

a is the true age for the test sample n, ŷn
a is

the predicted age for the test sample n, and N is the number of the test samples.

Figure 2: Example faces from FACES (left) and Lifespan (right) datasets.

3.2 Expression-Invariant Age Estimation
In this experiment, we compare two cases. First, learning the age independently from the ex-
pression. Second, learning the age jointly with the expression. In both cases, the same 5-fold
age-expression datasets are used for evaluation. For the expression-independent learning, a
multi-class SVM is used as a baseline. In the expression-joint learning, we use the proposed
graphical model and the number of hidden states |H| is set to 3. For the model learning,
the expression is observed and the potential function in equation 2 is applied. The results
for the proposed model are shown in Table 1. For both datasets, our graphical model sig-
nificantly reduces the prediction error (14.43% for FACES and 37.75% for Lifespan). The
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errors reported in [7] and [18] for FACES and Lifespan datasets are shown in Table 1. Al-
though both methods assume prior-knowledge of the expression of tested samples, our model
outperforms their results for the two datasets.

We further compare our age estimation approach with the joint classification method by
[9]. The method was proposed to recognize facial expressions while reducing the influence
of human aging. In their method, the authors simply divide the dataset into four age groups
([18-29],[30-49],[50,69], and [70-94]) and consider each expression within each age group
as a new class. Then, classification is performed on the newly defined classes. For facial
feature extraction, they manually labelled 31 fiducial points and applied Gabor filters [3]
on the locations of those points. The four age group classification accuracy using the joint
learning method is reported.

To make a fair comparison, and since the authors [9] manually labeled 31 fiducial points
on the face, we use our features and compare only the joint learning methods. To this end,
we create a new class for each age/expression combination. Different from [9], where the
datasets are divided into four age groups, we consider each age separately. The total number
of new classes is 37×6 = 222 in the FACES dataset and 74×2 = 148 classes in the Lifespan
dataset. The obtained errors for FACES and Lifespan are 9.94 and 8.85 years respectively,
which are higher than the baseline errors and the ones obtained by our graphical model. It is
worth mentioning that in [9], as the datasets are divided into four age groups, the method is
tested on smaller number of “joint-classes” (24 and 8 for FACES and Lifespan respectively).
In this experiment, the number of joint-classes is much higher.

Detailed results for independent and joint learning for FACES and Lifespan datasets are
shown in Tables 2 and 3, where the error for each expression subset is shown separately. The
error is reduced for all expression subsets, however, in different rates. The largest improve-
ment is achieved for neutrality (with 30.13% error reduction), while the smallest improve-
ment is obtained for the anger and the disgust expressions (4.64% and 2.43% respectively).
This is explained as anger and disgust expressions induce more profound changes in the face
appearance than the other expressions which make age prediction/perception more difficult.
Our model clearly outperforms the existing methods [7, 9, 18] by a wide margin which
further proves the effectiveness of our approach.

The hidden states capture the changes in the face appearance. To further illustrate this
point, we show the face regions corresponding to each hidden state. More specifically, the
averages of the bottom and top regions are computed (Figure 3). For the bottom regions,
the first hidden state corresponds to the face appearance where the mouth is open, the third
hidden state represents a depressed lip corner, and the second hidden state corresponds to
a normal face appearance. For the top regions, the second hidden state represents the face
appearance where the eye is slightly closed while the first and the third states correspond to
open eye appearances.

3.3 Joint-Learning for Expression Recognition

In this experiment, we consider a different, yet related, task: how age information can im-
prove the recognition of expressions. Although aging affects how people exhibit expressions,
much of automatic expression recognition methods do not use the age of the subject to rec-
ognize expressions. This is mainly due to the lack of expression datasets with a sufficiently
large age range. Motivated by the introduction of recent age-expression datasets, Guo et al.
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Figure 3: Average face regions corresponding to different hidden states (from left to right)
for the bottom and top face regions.

Table 1: Expression-independent and expression-joint learning are evaluated on FACES and Lifespan datasets.
The results show clear improvement of performance when the age is learnt jointly with the expression and the age
prediction error is reduced by 14.43% and 37.75% for FACES and Lifespan datasets respectively. The results of
the methods [7] and [18] along with the results using the joint learning method [9] are compared with ours. Our
model obtains the best performance for both datasets with a large margin. Note that [7] and [18] assume that the
expressions of the tested sample is a prior-knowledge while our model has no such requirement. The last column
shows the difference in error when using the joint learning in comparison with independent learning.

Dataset [7] [18] [9] Indep-Learn Joint-Learn Reduc-Rate %
FACES 9.12 8.33 9.94 8.66 7.41 14.43%
Lifespan 6.63 6.23 8.85 8.45 5.26 37.75%

Table 2: Age estimation error for each expression subset on the FACES dataset. The error is reduced for all
expressions using the expression-joint learning. The largest error reduction is achieved for neutral faces (30.13%)
while the smallest error reduction is obtained for anger and disgust (4.64% and 2.43% respectively).

Test Data Indep-Learn Joint-Learn Reduc-Rate %
Neutrality 8.54 5.97 30.13
Anger 8.61 8.21 4.64
Disgust 8.37 8.17 2.43
Fear 9.79 8.25 15.71
Happiness 8.42 6.77 19.58
Sadness 8.17 7.07 13.44
Average 8.66 7.41 14.43

[9] recently proposed a method to recognize facial expressions while reducing the influence
of human aging.

We apply our model on FACES and Lifespan datasets to recognize the expression. The
results are shown in Table 4. Our method improves the expression recognition performance
for the FACES dataset by 2.38%. However, the accuracy on the Lifespan dataset is compa-
rable to the one acquired by independent learning. This maybe explained by the observation
that there are only two expressions in Lifespan compared to six ones in FACES, and hence the
expression variation within Lifespan dataset is smaller than it is within the FACES dataset.
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Table 3: Age estimation error for each expressions subset on the Lifespan dataset. The error is reduced for both
neutrality and happiness expressions. Note that, since the numbers of happy and neutral faces are not equal, the
weighted average is computed.

Test Data Indep-Learn Joint-Learn Reduc-Rate %
Neutrality 8.66 5.72 33.94
Happiness 7.96 4.14 47.91
Average 8.45 5.26 37.75

Table 4: Expression recognition using age-joint and age-independent learning evaluated on FACES and Lifespan
datasets. Joint-learning improves the accuracy by 2.38% on the FACES dataset while the accuracy on the Lifespan
dataset is comparable. The method in [9] is further tested on our features, and the results show degrading in the
performance for both datasets.

Dataset Indep-Learn % Joint-Learn % [9] %
FACES 90.05 92.19 84.68
Lifespan 93.91 93.68 91.05

Consequently, the margin of improvement is smaller for the Lifespan dataset and the joint
learning method obtains comparable accuracy.

We compare the proposed method with the one in [9]. As the authors manually labeled 31
fiducial points on the face and extracted the features using their locations, a direct comparison
of the results will not be fair. Thus, we test the method in [9] using our features. The datasets
are divided into the same four age groups ([18-29],[30-49],[50,69], and [70-94]). Then, a
new class is created for each expression/age group combination resulting in 24 and 8 new
classes for the FACES and Lifespan dataset respectively. The obtained accuracy (see Table
4) is lower than the one acquired by our model.

4 Discussion

The results obtained using our graphical model show the strength of joint-learning to al-
leviate the influence of facial expression in age prediction. Some existing works [7, 18]
approached age prediction with variant facial expressions. Our method is different in two
aspects: First, in our model, the age is jointly learnt with all expressions instead of learning
the cross-expression for two expressions at a time. This property allows our model to be
extended to a broader group of tasks where the changes are not restricted to the basic (pro-
found) expressions. For example, the changes can be described by a group of smaller units
(e.g. action units [5]). These changes can describe various face (undefined) expressions. In
such cases, the hidden layer will learn the relationship between the age and multiple variables
(action units) instead of one variable (expression) at a time. Moreover, beside facial expres-
sions, other attributes can be learnt collectively within the proposed graphical model such as
gender and race. Second, the proposed approach does not require the expression labels of
the test samples to be known while the existing methods [7, 18] assume prior-knowledge of
the expressions.
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5 Conclusions
In this paper, an expression-invariant age predictor is proposed by jointly learning the age and
the expression. We introduce a graphical model with a latent layer to learn the relationship
between the age and the expression. This layer is designed to capture the changes in the face
which induce the aging and the expression appearance.

Conducted on two age-expression datasets (FACES and Lifespan), our experiments show
the improvement in performance when the age is jointly learnt with the expression in com-
parison to expression-independent age estimation. The age estimation error is reduced by
14.43% and 37.75% for FACES and Lifespan datasets respectively. Furthermore, using our
model, without prior-knowledge of the expressions of the test faces, the acquired results are
better that the best reported ones for both datasets.
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