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Abstract

Despite the great success of recent facial landmarks localization approaches, the pres-
ence of occlusions significantly degrades the performance of the systems. However, very
few works have addressed this problem explicitly due to the high diversity of occlusion
in real world. In this paper, we address the face mask reasoning and facial landmarks lo-
calization in an unified Structured Decision Forests framework. We first assign a portion
of the face dataset with face masks, i.e., for each face image we give each pixel a label to
indicate whether it belongs to the face or not. Then we incorporate such additional infor-
mation of dense pixel labelling into training the Structured Classification-Regression De-
cision Forest. The classification nodes aim at decreasing the variance of the pixel labels
of the patches by using our proposed structured criterion while the regression nodes aim
at decreasing the variance of the displacements between the patches and the facial land-
marks. The proposed framework allows us to predict the face mask and facial landmarks
locations jointly. We test the model on face images from several datasets with significant
occlusion. The proposed method 1) yields promising results in face mask reasoning; 2)
improves the existing Decision Forests approaches in facial landmark localization, aided
by the face mask reasoning.

1 Introduction

Accurate semantic facial landmarks localization is a well studied problem in computer vision
as it is desirable for many facial analysis tasks including face recognition, facial expressions
and facial animation. In recent years, remarkable progress has been made and some of them
have reported close-to-human accuracy on face images in the wild [5, 9, 36, 42]. However,
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Figure 1: The images on the left side of the two pairs show the results from the standard
Random Forests for facial landmarks localization [9], with failure cases under occlusion.
The images on the right side of the two pairs show the results of our proposed method. It
first explicitly predicts the face mask (the semi-transparent region), then use the face mask
information to improve the localization and to predict the occlusion status of the landmarks.

these methods are prone to break down when confronting partial facial occlusions, which
occur frequently in realistic scenarios (e.g. the use of scarf or sunglasses, hands or hair on
the face). It is intractable to model the occlusion due to its high diversity. Thus very few
work has been done [4, 43]. While [43] tried to model a few synthetic occlusion patterns,
the recent method of [4] dealt with the occlusion problem in more realistic sceneries. Both
of them only focused on modelling the occlusion in an unstructured way, i.e. treating the
visibility of each landmark independently. However in realistic conditions, the occlusion
patterns (or called occluders) often occupy a continuous region instead of an individual pixel
location, as depicted in Fig 1. Thereby the whole occluded region will consistently affect the
landmarks localization.

We in this work address the face mask reasoning and facial landmark localization in an
unified random Decision Forests (DF) framework. The DF framework has shown powerful
and efficient performance in various computer vision tasks such as human pose estimation
[10], object detection [28], and facial landmark localization [9, 30, 40], which works in a way
that local observations (patches) are extracted at several image locations, propagated into
the forests and then cast votes for localization of targets (body joints or facial landmarks).
However, as Yang & Patras stated in [40], not all votes from the forest are valid and the
invalid votes degrade the localization accuracy. In our observation, these invalid votes are
very likely from the occluded facial regions. Therefore, we model patch occlusion status
explicitly, in a way similar to semantic image labelling [12, 22, 23], by encoding each pixel
with a semantic label, face or non-face in our case. We propose a structured semi-supervised
forest framework for face mask reasoning and landmarks localization. Specifically we make
the following contributions:

1. We have built a rich face image dataset with face mask annotation. The dataset was
built as an extension of the recent datasets: Caltech Occluded Faces in the Wild (COFW),
Labeled Face Parts in the Wild (LFPW) and Labeled Face in the Wild (LFW). We manually
annotate a portion of images in these datasets with face masks. The face mask indicates
whether or not each pixel belongs to the face.

2. We propose a structured semi-supervised joint classification-regression forest with
the following properties. First, semi-supervised, it uses training images from the above de-
scribed augmented dataset, only a portion of which are with face masks. Second, structured,
it has a novel structured criterion for split function selection for the pixel labelling (face
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mask reasoning) problem. Third, joint classification-regression, it predicts face mask label
for each pixel (classification) and the landmark locations (regression) at the same time, and
more importantly it uses the face mask reasoning results to improve the accuracy of landmark
localization.

The proposed method is evaluated on images with clear occlusions from LFPW, LFW
and COFW datasets. The joint framework shows superior results in both facial landmark
localization and face mask reasoning, over the existing Decision Forests methods, which
were proposed to deal with one of these two tasks.

2 Related work

Facial landmark localization: There is a wide range of literature on facial landmark local-
ization or face alignment. These methods can be roughly grouped into holistic based and
local based. A typical holistic based method is the Active Appearance Model (AAM) [6]
that regresses the shape (the locations of the landmarks) in an iterative way. At each iteration
of AAM, an update of the current model parameters is estimated via a simple linear regres-
sion method. Recent methods in this category improve the original AAM by using better
optimization strategies or different features for regression in each iteration [27, 33, 36]. A
similar framework called Cascaded Pose Regression (CPR) with random fern as the primi-
tive regressor has shown very good results [4, 5, 11, 13, 41] in both localization accuracy and
efficiency. Convolutional neural networks [31] have been used for this problem as well. Lo-
cal based methods often consist of local detection, classification [3] or regression [34], and
shape constraints modelling, that includes Constrained Local Model (CLM) [2, 8, 19, 27],
tree-structured model [42, 44, 46], Restricted Boltzmann Machines [35] and graph matching
[45]. Our work is closely related to [7, 9, 38, 39] that use Regression Forest as a local detec-
tor for landmarks localization. Although these models achieved certain degree of success,
they all struggle under partial face occlusion.

Face Mask Reasoning: Face mask reasoning, or explicit occlusion detection, has at-
tracted very limited attention and only a few works have been proposed [26, 37, 43]. These
works simulated only a few common occlusion patterns such as sunglasses, scarf and hands.
The diversity of such synthetic patterns is far less than that in real world. A recent work [4]
uses occlusion annotations in images collected from the real world when training a cascade
of regressors (CPR). During testing it estimates the location of the landmarks and, for each
one an occlusion label, that is, whether it is visible or not. All these methods treat the oc-
clusion on landmarks in an independent way. However, occluders in real scenarios always
cover a continuous region. Thereby, we in this work treat the face mask reasoning in a way
similar to image labelling, i.e., to predict each pixel whether it belongs to a face or not. Our
work is related to [17, 22, 23], which demonstrate the efficiency and effectiveness of random
forests for semantic image labelling. Our approach is also related to the works for face pars-
ing [24, 29] in terms of splitting the face into several non-overlapped regions and to [25] in
terms of measuring the relevance of image observation for the target regression.

3 Methodology

Our structured semi-supervised forest performs classification and regression on their corre-
sponding domains in one estimator as we believe these two tasks are mutually dependent. We


Citation
Citation
{Cootes, Wheeler, Walker, and Taylor} 2002

Citation
Citation
{Saragih and Goecke} 2007

Citation
Citation
{Tresadern, Sauer, and Cootes} 2010

Citation
Citation
{Xiong and Deprotect unhbox voidb@x penalty @M  {}la Torre} 2013

Citation
Citation
{Burgos-Artizzu, Perona, and Doll{á}r} 2013

Citation
Citation
{Cao, Wei, Wen, and Sun} 2012

Citation
Citation
{Doll{á}r, Welinder, and Perona} 2010

Citation
Citation
{Efraty, Huang, Shah, and Kakadiaris} 2011

Citation
Citation
{Yang, Zou, and Patras} 2014

Citation
Citation
{Sun, Wang, and Tang} 2013

Citation
Citation
{Belhumeur, Jacobs, Kriegman, and Kumar} 2011

Citation
Citation
{Valstar, Martinez, Binefa, and Pantic} 2010

Citation
Citation
{Asthana, Zafeiriou, Cheng, and Pantic} 2013

Citation
Citation
{Cristinacce and Cootes} 2006

Citation
Citation
{Jia, Zhu, Lin, and Chan} 2013

Citation
Citation
{Saragih and Goecke} 2007

Citation
Citation
{Yu, Huang, Zhang, Yan, and Metaxas} 2013{}

Citation
Citation
{Zhao, Shan, Chai, and Chen} 2013

Citation
Citation
{Zhu and Ramanan} 2012

Citation
Citation
{Wu, Wang, and Ji} 2013

Citation
Citation
{Zhou, Brandt, and Lin} 2013

Citation
Citation
{Cootes, Ionita, and P.} 2012

Citation
Citation
{Dantone, Gall, Fanelli, and {Van Gool}} 2012

Citation
Citation
{Yang and Patras} 2012

Citation
Citation
{Yang and Patras} 2013{}

Citation
Citation
{Roh, Oguri, and Kanade} 2011

Citation
Citation
{Yang, Huang, and Metaxas} 2011

Citation
Citation
{Yu, Yang, Huang, and Metaxas} 2013{}

Citation
Citation
{Burgos-Artizzu, Perona, and Doll{á}r} 2013

Citation
Citation
{Glocker, Pauly, Konukoglu, and Criminisi} 2012

Citation
Citation
{Kontschieder, Bulo, Bischof, and Pelillo} 2011

Citation
Citation
{Kontschieder, Kohli, Shotton, and Criminisi} 2013

Citation
Citation
{Luo, Wang, and Tang} 2012

Citation
Citation
{Smith, Zhang, Brandt, Lin, and Yang} 2013

Citation
Citation
{Patras and Hancock} 2010


4 JIA, YANG: STRUCTURED SEMI-SUPERVISED FOREST

Training Testing

™ =@ m
Clm A

ALY
Classification
[7] Regression
7 /

Figure 2: The framework of proposed method. We use face images with annotation of
facial landmarks and face masks for training. By randomly switching the information gain
function at the internal nodes, the decision trees are optimized with respect to both the offsets
to landmarks (regression) and to the local structured label configuration (classification). The
forest model is able to predict the face mask and landmark locations jointly. We exploit the
face mask prediction to further improve the landmark localization.
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start with a brief introduction of the augmented training data in Section 3.1. Then, we show
how we encode both the landmarks locations and structured face/non-face labels within the
decision forests in Section 3.2. Finally, we describe the inference procedure in Section 3.3.

3.1 Training data

A forest is an ensemble of trees 7 = {T;}. Each tree T; is built on a randomly selected subset
of the training images. In our semi-supervised setting, we have a portion of images with
face mask labeling and the rest without. We randomly extract a set of training data (patches)
from the training images. We denote it by D = {P;,P,} , where P, represents the patch
extracted from training images with face mask label and P, represents that from training
images without face mask label. Without loss of generality we denote them by the same
form P = (Z4%d*F 2N pd'xd") where T is the d x d sized image patch with F channels
of features; V' is a N 2D displacement vector from the patch centroid to each of the N facial
landmarks; M consists of the d’ x d’ of class labels, i.e., M = Y4 *4" Note that the size d’
of label patch may differ from the size d of the image patch. For P, where there is no face
labels, M is a null matrix.

3.2 Structured decision forests

In this section, we demonstrate how to encode both the landmarks locations and structured
face labels (face mask) in the learning procedure of decision forests. Of particular interest
in this work is the case where x € X" represents input image patch and y € ) encode the
corresponding image annotation (in our case, ) =V x M, where V is the landmark offset
vector and M is the face mask). Thus, we have two objectives: first, localization of the land-
marks and second, the structured labels of different classes (face or non-face). Similar to the
hybrid forests [32], we use two separate types of split nodes that optimize different objective
functions. The first type of node is for regression and the second type is for classification.
Specifically, for a given node i and the training set D; C X x ), the goal is to find the best
split function k(x, 6;) with parameters 6; = (f,k;,kz,7) from a pool of randomly generated
candidates, where f is the feature channel, k; is the sub-region within patch and 7 is the
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threshold,
0 i (k) <x(k)+T
h(x, 8:) { 1 otherwise ' M
that maximizes an objective function, in our case the information gain:
L DR D/| 4y pi
I(D;,D;, Df) =H(D;) — Y H(D). 2)
jEL,R |Di‘

where H(-) is the entropy function. The same procedure is applied recursively on the child
nodes, DiL and DIR, until a certain stopping criterion is met, for instance when a maximum
depth is reached or the information gain or training data size fall below fixed thresholds.

For regression nodes, we need to adapt information gain calculation for continuous vari-
ables. In our case for V, the aim is to cast precise votes concerning the landmarks location.
Therefore, we follow the class-affiliation method proposed by [9] to measure the uncertainty
which is defined as:

¥ Ypep,(ealP) Ypep, P(ca|P)
(D) ==L = p e ( D) ) )
plenP)<exp (171 @

where p(c,|P) indicates the probability that the patch P is informative about the location of
the landmark point n. The class affiliation assignment is based on |v|, the Euclidean distance
between the patch and the landmark location. The variable A is used to control the steepness
of this function.

For classification nodes, we propose a structured way of calculating the entropy. A
standard classification method can only deal with a single (atomic) label per input patch
sample. It usually represents the patch center label with a finite set of discrete class labels
(y € Z). Consequently, H(-) is defined as the Shannon entropy

H(D;) ==Y p(ylx)log(p(ylx)) (5)
y

where p(-) is the empirical class distribution estimated from the training set D;. However,
the abandoning the structured labels and making the prediction independently will result in
the inconsistency in the output spaces. For our face/non-face labeling problem, the unstruc-
tured prediction often results in inconsistent face mask reasoning. So far as y € ya'xd g
concerned, we face two main challenges: 1) information gain over structured label space is
not well defined. 2) structured labels are often of high dimension, complex and prohibitively
expensive to score numerous split candidates.

Inspired by recent works [17], we define a structured criterion for split function selection.
We first discretize the structured labels by partitioning the label spaces, that is inspired by
the structured edge detection work of [12]. We utilize a two-stage approach. First we map
the structured space to an inter-median space B, ) — . Then we map the space B to a
discrete label space Z, B — Z. More specifically, B = I1()) is a long binary vector that
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encodes whether every pair of pixels in ) belong to the same or different labels, such that
we can approximately estimate the dissimilarity of ) by computing the hamming distance in
space B. Considering B may be high dimensional ( Cg,Xd/ for a patch with d’ x d’ structured
labels), dimensionality reduction is required for efficient computation. We first use a distinct
and reduced mapping Ils, : J — B. Instead of using all pairs, we randomly generate m
dimensions of BB, which is parametrized by J; and applied to the training set D; at each node
i. This not only contributes to fast computation but also introduces randomness into the
learning process at the node level. After that, Principal Component Analysis (PCA) [20] is
applied to further project the reduced 5 to 7 dimensions.

Finally we map the entry in space B to a label in space Z = {1,...,k}, such that labels
with similar b € B are assigned to the same discrete labels z. We quantize b based on the
top logz (k) PCA dimensions, assigning b a discrete label z according to the orthant (gener-
alization of quadrant) into which b falls. To this end, mapping the structured label to space
Z allows us to use the standard information gain criterion based on Shannon entropy as de-
fined in Eq. (5). In practice, we use I1s with dimension m = 256 and the discrete labels
with k = 2. In fact, even an approximate distance measure for ) like this suffice to train
effective decision forests classifiers [16]. We note that, in our semi-supervised setting, there
are both P; and P, thus at classification nodes, the information gain only evaluated on the
data with labelled face mask. The entire learning procedure will be greatly benefited from
the contribution of the ones with unlabelled mask at regression nodes.

Leaf Models. As in Hough forests [15], we assign certain levels of depth in the tree a
fixed type of evaluation objective. We thus introduce a steering parameter ¥ which indicates
from first levels up to depth ||, only those regression nodes are evaluated, such that the visual
feature variation due to displacements to the facial points is first removed at top levels. Then,
starting with depth |y| of the trees, classification nodes and regression nodes are selected
randomly. Therefore, image patches reach one leaf node tend to have similar offsets to the
facial points and exhibit similar structured face/non-face labels.

At each leaf node, e.g. leaf node I, we calculate: (i) the relative offsets to each facial
point O] = (A}, '), similar to [14], where A is the mean value and @]’ = m with X
the covariance matrix of the offsets to the nth facial landmark; (ii) a structured label y; of
size d’' x d’ based on D; (D; C D), which is a subset of training data at leaf node /. More
specifically, we select the y; (y; € ) whose value in the inter-median space b; € B is the
medoid, i.e. the b; that minimizes the sum distance to all other b in D;. This is equivalent
to ming ¥,y (b — by )?, where b is the mean vector of all b in D;. We denote by fC(x) the
classification output of tree ¢ cast by x and by £%(x) the regression output.

3.3 Face mask reasoning and landmark localization

At testing time, image patches x € X’ are densely extracted with a stride s and fed to the forest
until they reach leaf nodes, where votes are cast for both the localization of facial points and
the patch face/non-face label prediction. As opposed to standard classification algorithms,
our classifier f,c (x) cast a prediction for the center pixel, as well as its neighbouring pixels.
Hence, a predicted face mask M, is obtained for each test image in a similar way to [12].
Specifically, each pixel gets d’ x d’ x T /s> predictions, where T is the number of trees and s
is the stride size. Then we merge the multiple predictions by a simple average fusion to get
the final face mask prediction.

Meanwhile, given the regression outputs of the forest, we can accumulate the Hough
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score for facial landmark n as follows. Denote each image patch x, by its location y, which
ends in a set of leaf nodes ny in the forest.

S =), ) ofexp

Xy le l:«'fy

(_”)A’n - (y“rA?)

T ER) aen > A B0 > ) ©

where /" is a learned per-point bandwidth. f(A) is the proximity metric defined in Eq. (4).
6;(-) is the Dirac delta function. ;(-) only allows votes which fulfil the proximity test, using
the proximity threshold A”.

The face mask term M ,(y) differentiates our method from the existing works as we
believe that the patches from face region and non-face region contribute differently to the
facial landmarks localization. The Dirac delta function 8,(-) isolates the effect of votes from
non-face region which most likely correspond to the occluders. We note that, by setting
7' =0, we allow forests to collect votes from the entire image domain, while higher 7’ only
allows patches from face regions with higher face confidence.

Additionally, the ratio r": the sum of votes associated with each facial point n before and
after the 8,(-) is applied is traced in our work. This is because for heavily occluded facial
points, only few valid votes remain after &,(-) is applied, so that the proximity threshold A,
should be reduced to allow longer distant patches to cast their votes. Such votes essentially
introduce stronger facial shape constraint. Finally a mean-shift mode finding algorithm is
applied on the Hough map for final facial landmark localization.

4 Experiment

We evaluate the performance of our proposed framework for both landmark localization and
face mask labelling on three augmented face image datasets.

COFW: Caltech Occluded Faces in the Wild. This dataset [4] consists of 1007 face
images showing heavy occlusion and large shape variations, which was designed to bench-
mark face landmark algorithms in realistic conditions. All images were hand annotated with
29 landmarks and their corresponding visibility flag as well. Since they were obtained from
a variety of sources, the faces are occluded by various patterns (e.g., hands, hats, hair, sun-
glasses, etc.) in different degrees. We augmented the dataset with a densely labelled face
mask associated with each face image that is tightly fit to the face region. Meanwhile, we
annotated the global head pose status as in [9], found that 903 out of 1007 images present
nearly frontal head pose.

LFW: Labeled Faces in the Wild. This dataset [9, 18] contains low resolution face
images of 5479 individuals, 1680 of which have more than one image, exhibiting a large
variety of facial appearance as well as general imaging conditions. LFW consists of 13,233
images annotated with 10 landmarks.We provided the face mask annotation for 837 images.

LFPW: Labeled Face Parts in the Wild. This dataset [3] shares only 1300 image URLs
on the web, all images annotated using the same 29 landmarks as in COFW but without
visibility flag. They were also captured in unconstrained conditions. Only 811 of the 1000
training images and 224 of the 300 test images can be downloaded when we carried out the
experiment. We provide 496 images with face mask annotation.
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Figure 3: Results on LFW_Test (a), LFPW_Test (b), and COFW (c), compared to [I,
7, 38, 40, 46]. The error is measured as a fraction of the inter-ocular distance. Two lip
landmarks are not detected by [40]. LFW_Test and LFPW_Test only contain ’difficult’
image as described in Sec 4.1. (d) shows the run-time performance in fps.

4.1 Implementation details

Due to the performance saturation and the lack of occlusion on the LFPW and LFW dataset
[4, 9], we cannot fully exploit the benefits of our face mask prediction and landmark local-
izations. Therefore, we only report the results on the “difficult’” subsets of LFW and LFPW.
We obtained the difficult subsets in a similar way to [40], namely the face images are re-
garded as difficult if the average point localization error detected by the CRF-D [9] method
is greater than 0.1 inter-ocular distance. 237 face images were obtained in the LFW_Test
and 96 face images in the LFPW_Test. The number of resulting images is small due to the
fact that face images on these two datasets are relatively easier. Only a few of them either
contain occlusion caused by hair or sunglasses, or present large shape variation. We also
randomly select 300 images from COFW dataset as test set. We note that, all images from
the three test sets were annotated with mask.

We use all the remaining face images from the 3 datasets for model training, which
consists of 6781 images and 1603 of them are with face mask labels. Each tree was built
using 1200 images(nearly 600 of them with labelling mask) and 100 patches were extracted
from each image with no labelling mask and 250 from the ones with labelling.

To build our forest model, we use similar experimental settings to [9] such as the face
bounding box size, bandwidth parameter (6) and proximity threshold (6). Some other pa-
rameters are as follows: image patch size (d = 24), label patch size (d’ = 12), 37 channels
of image features (1 gray scale, 4 HOG-like features, 32 Gabor features), face confidence
threshold (7’ = 0.78). The macro forest parameters are: number of trees 10, steering param-
eter Y = 7, minimum number of samples 8, maximum depth 25.

4.2 Results for landmark localization

We compare our method with the recent Decision Forest methods for facial feature detec-
tion. They are Structured-Output Regression Forests (SO_RF) [38], Regression Forests with
Constrained Local Model (RF_CLM) [7] and Regression Forests Sieving (Sieve_RF) [40].
We use the same experiment setting (image data, image feature and macro parameters of the
forest) to re-train the Decision Forest models for SO_RF and RF_CLM. We use the trained
model of Sieve_RF since the code is publicly available only recently and their model cannot
detect the lip landmarks. We also compare the representative DPM+tree structure method
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Method BaselineRF  BalineRF  StructureRF FullRF FullRF Ours
+CRF +Simple Fusion ~ +Simple Fusion ~ Opt. Sel.

Global 68.8 81.7 73.6 74.8 78.8 83.9

Avg (face) T1.2 86.6 74.2 75.1 81.7 88.6

Table 1: Face mask reasoning results on the COFW dataset, compared to the related methods.

[46] (DPM) and a commercial system (Betaface) [1].

Fig. 3 shows the results of the 10 common facial landmarks on all three datasets. Our
proposed method achieved better performance than the other methods on ’difficult’ images
from LFW LFPW and the challenging COFW datasets, despite the fact that all the bench-
mark Decision Forest methods have used shape models, explicitly (SO_RF and RF_CLM)
or implicitly (Sieve_RF) while our method only works as a local detector. On the COFW
dataset, the performance of our method still has a gap to the performances of human, due
to the heavy occlusion. Note that we have focused on comparing the Regression Forests
voting method proposed in recent years, rather than on producing the best facial landmarks
detector as we aim to validates the effectiveness of our proposed scheme, i.e., to select reli-
able patches from face regions based on face mask prediction. As our method is still a local
detector, it can be naturally further combined with face shape models, for instance it can be
combined with CLM in a way similar to [7], in order to further boost the performance.

Our predicted face mask can intuitively reason the occluded regions on a face image,
rather than just checking the visibility [4] of individual pixel. We propose a more reasonable
method for landmarks visibility detection. We calculated the occlusion ratio over a small
region (within 0.2 inter-ocular distance) surrounding the estimated landmark location, and
obtained a 80/57% precision/recall for landmark visibility prediction, which is much better
than 80/40% reported in [4].

4.3 Results for face mask reasoning

In this section, we evaluate face mask reasoning performance of our method on the COFW
dataset. We compare to the methods that are used for general scene parsing: 1) the stan-
dard random forest which yield independent prediction (denoted by Baseline RF); 2) stan-
dard random forest + conditional random field post-processing (BaselineRF+CRF) [21]; 3)
three structured forest variants from [22], namely: the StructureRF+Simple Fusion, the
FullRF+Simple Fusion and the FullRF+Optimized Selections, all of which yield struc-
tured outputs. We followed the evaluation criteria as used in [22]. Specifically, two measure-
ments are reported: 'Global’, that refers to the percentage of all pixels that were correctly
classified; 'Avg(face)’ that expresses the average recall over all classes (face and non-face).

We show the results in Table 1. First, we can clearly see a big margin between the stan-
dard RF and structured approaches, which enforce spatial consistency and yield plausible
local configuration. Second, our structured approach outperforms the FullRF+Optimized se-
lection and RF+CREF in terms of both 'Global’ and ’Avg(face)’. The gain in performance
validates the effectiveness of our proposed structured information gain criterion and the use-
fulness the joint classification and regression framework. Some results are shown in Fig 4.
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Figure 4: Illustration of two face mask reasoning results on COFW: (from left to right)
original image, ground truth, result of the standard RF and result of our proposed method.

5 Conclusion

A structured semi-supervised forest model is presented in this paper for joint face mask
reasoning and facial landmark localization under occlusion. We augmented a portion of
training images with densely manually-labelled face masks that are used for structured output
learning, based on our proposed structural information gain criterion. Experiments show that
the proposed framework achieves accurate and spatial consistent face mask prediction, which
further assists the landmark localization. We have focused on comparing to the Regression
Forests based method and show competitive performance in both tasks. As our method is
still a local facial feature detection, we believe that it could be incorporated into a range of
model matching frameworks for facial landmarks localization performance boost.
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