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Abstract

We present a novel method for dense variational scene flow estimation based a multi-
scale Ternary Census Transform in combination with a patchwise Closest Points depth
data term. On the one hand, the Ternary Census Transform in the intensity data term
is capable of handling illumination changes, low texture and noise. On the other hand,
the patchwise Closest Points search in the depth data term increases the robustness in
low structured regions. Further, we utilize higher order regularization which is weighted
and directed according to the input data by an anisotropic diffusion tensor. This allows
to calculate a dense and accurate flow field which supports smooth as well as non-rigid
movements while preserving flow boundaries. The numerical algorithm is solved based
on a primal-dual formulation and is efficiently parallelized to run at high frame rates.
In an extensive qualitative and quantitative evaluation we show that this novel method
for scene flow calculation outperforms existing approaches. The method is applicable to
any sensor delivering dense depth and intensity data such as Microsoft Kinect or Intel
Gesture Camera.

1 Introduction

The structure and 3D motion of objects are essential to characterize and understand a dy-
namic scene. While structure from motion (SfM) on static scenes is well understood, non-
rigid scenes still pose a challenging problem, commonly addressed as Scene Flow (SF). The
applications for SF analysis range from driver assistance, surveillance, action recognition,
tracking, segmentation, 3D reconstruction to camera pose estimation.

In the last decades a lot of work has addressed pure two-dimensional flow, namely Op-
tical Flow (OF) [10]. The estimation of 3D motion is a relatively new topic of research.
A popular way to estimate SF through OF is to use a calibrated and synchronized multi-
view setup, where the OF estimation is combined with a depth reconstruction, as shown in
[1, 13,24, 25, 26]. With recent range sensor developments, direct depth measurements are a
popular alternative to multi-view depth imaging. Such novel sensors e.g. Microsoft Kinect or
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Intel Gesture Camera already reached a sufficient level of accuracy and robustness to allow a
wide usage in the mass market. With the help of these very affordable sensors it is no longer
necessary to reconstruct the whole scene through a computationally expensive multi-view
setup but directly access dense depth data from the sensor.
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Figure 1: The scene flow is estimated from two consecutive depth and intensity acquisitions.
The depth data term is calculated as patchwise Closest Point (CP) search and the intensity
data term is calculated as Ternary Census Transform (7CT). For regularization we propose
an anisotropic Total Generalized Variation (TGV). The flow is visualized as a color coded
X,Y map (motion key in the bottom right). The Z component is shown as arrows colored
according to their magnitude.

In our approach we use the output of these sensors to calculate dense SF, utilizing a
combination of depth and intensity data as shown in Fig. 1. Our idea is to establish novel
SF constraints to model motion through projections and image warping directly in 3D. In
particular, we propose an intensity data term to estimate the scene correspondences by a
Ternary Census Transform (7CT) on a local neighborhood and a depth data term to match the
depth measurements directly in 3D by a patchwise Closest Point (CP) search. Compared to
traditional pointwise constancy terms our method is invariant to most illumination changes,
more robust to acquisition noise and delivers better guidance in regions with low structure
or low texture. The SF constraints are combined with a higher order regularization term,
namely Total Generalized Variation (TGV). Further, the regularizer is weighted and directed
by an anisotropic diffusion tensor based on the input data.

The main contributions of this work are threefold: 1) We propose a novel SF model using
advanced data terms using a TCT in the intensity and a patchwise 3D CP search in the depth
data term. 2) In these constraints the flow is estimated by a warping through a projection and
backprojection in 3D. 3) We formulate the proposed non-convex data terms combined with
an anisotropic higher order regularization as variational energy minimization problem which
is efficiently solved by the primal-dual algorithm.

2 Related Work

The first definition of the terminology of Scene Flow (SF) was given by Vedula ef al. [23, 24]
to estimate the 3D motion from a multi-view image sequence. Following this multi-view
approach a lot of follow up work has been done, such as [1, 13, 25, 26].

With the recent availability of affordable depth sensors, methods for SF calculations from
combined depth and intensity acquisitions have emerged. A local approach was introduced
by Hadfield and Bowden [8, 9], where the SF calculation was modeled using a particle filter.
They argue that this particle based estimation avoids oversmoothing in the flow field. Sim-
ilar, Quiroga et al. [17] proposed a method to directly calculate the SF in a Lukas Kanade
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(LK) framework. In [18] they embedded this model in a dense optimization framework. The
estimation of a dense flow field in a linear optimization scheme was proposed by Letouzey
et al. [14]. They combined an intensity constraint together with a sparse set of depth cor-
respondences calculated through SIFT feature matching. Gottfried er al. [7] proposed a
method for depth camera calibration to estimate dense Optical Flow (OF) together with a
depth flow estimation. Similar, Zhang et al. [30] combined a global energy optimization
and a bilateral filter to detect occlusions in a two-step framework. Using depth and intensity
information Herbst et al. [5] showed how to generalize variational OF algorithms for SF cal-
culation. They further show how SF aids object segmentation from motion. Similar to our
work, Hornacek et al. [12] recently showed the advantages of estimating 3D motion directly
through a patch matching in the point cloud. Unlike our method, they estimate this motion
by a full rigid-body estimation for each patch using a RGB-D PatchMatch algorithm [2, 11].
This is especially useful for large motion, but is less capable of input noise or illumination
changes.

Existing particle based approaches such as [8, 9] estimate SF on a sparse set of cor-
responding points, but these approaches deliver only a dense flow field after resampling.
Other approaches such as [14] calculate local feature correspondences for depth images and
a global flow estimation based on the intensity information separately. Hence, it will in-
evitably fail for wrong correspondence estimates. Our model builds on the success of global
optimization methods as shown in [5, 7, 18, 30]. But unlike our method, these methods
estimate the flow through pixelwise brightness and depth constancy. In contrast our model
calculates the intensity fidelity by a patchwise Ternary Census Transform (7CT) on multi-
ple scales, which is itself inherently invariant with respect to brightness changes. Further,
the depth fidelity is directly calculated with the 3D point cloud by calculating the patchwise
distance to the corresponding Closest Point (CP) estimates, similar to Iterative Closest Point
(ICP), which makes it more accurate in low structured regions and more robust to acquisition
noise. For regularization most current methods use first order penalization with a squared L2
or a Charbonnier norm. In contrast, we use a higher order regularization with L/ penalizer to
avoid oversmoothing and flow-flattening. Edge preserving properties and smooth transitions
like rotations or non-rigid movements are still possible. Furthermore, we use an anisotropic
diffusion tensor based on the depth images that not only weights the flow gradient but also
orients the gradient direction during the optimization process.

3 Method

The fundamental goal of 3D motion estimation is to calculate a metric motion of acquired
3D scene points in time. Consider the consecutive acquisition of a scene at time instances t =
{1,2} resulting in two consecutive depth and intensity image pairs D;,I; and Dy, 5: (Q C
R?) — R. The scene points are observed through projections at image positions x = [x,y]T €
Q with depth D;(x). Each scene point is therefore given by X, = K~!x"D;(x), where K is

the camera projection matrix and x" denotes the homogeneous image position. The instanta-

. . o T
neous motion for each scene point over time is given by u = [&X 4 dDT% — )y ) 1T

Hence, the scene motion is calculated as

X X uy
X, =X|+u, <= Y| =1|Y| + |uw], (D)
D 2 D 1 up
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as shown in Fig. 2. To get a correspondence in the image space the 3D movement is back

projected in the image space by

K(K~'x!D;(x1) +u)
Di(xi)+up

In the following we describe our variational model to estimate the general geometric flow

between two frames in 3.1 and the algorithmic details to solve this minimization objective in
3.2.

xp =W(xj,u) =

@)

(b)

Figure 2: Flow Geometry. A scene point X; acquired in the first frame moves to X in the
second frame, as shown in (a). This 3D movement between two acquisitions is defined as
flow u. The projection in the image space from point X; to X, is defined as the warping
W (x1,u). A projection of (a) in ¥ direction is shown in (b).

3.1 Variational Optimization Model

The Scene Flow (SF) estimation in our approach is formulated as a general variational prob-
lem

H}linGI(Il,Iz,u)+GD(D1,D27U)+R(“)7 3)

where the functions G, (I}, l,u) and Gp(I;,I,u) are measuring the intensity and the depth
data fidelity. Since the SF estimation is ill-posed we add constraints on noise and constancy
expressed as a regularization force R(u).

Traditional intensity data terms are calculated as pixelwise temporal derivatives by min-
imizing Ir(x1,u) = L(W(x1,u)) —I;(x1). In contrast, we use a more complex data term
which is invariant with respect to illumination and more robust to noise, namely the Ternary
Census Transform (7CT) [21, 29]. The intensity fidelity is measured by first computing the
TCT signature of the intensity images followed by subsequent comparison using the pixel-
wise Hamming distance between the images. The signature is given by

Clix)= @ {&d.xy)}, VxeQ. )
YEN (x) x#y

Let ® denote a concatenation and N (x) some local neighborhood around x. The pixelwise
sign £ is denoted by

0, ifl(y)—I(x)+€&<0
E(xy) =31, iflI(y)—I(x)]—£<0 5)
2, ifl(y)—I(x)—e>0.
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These results in a Census transformed image with a ternary string of length || — 1 for each
pixel to encode the illumination invariant local structure. The similarity between two strings
is given by the Hamming distance. In our method the intensity data term for one pixel is
given as the normalized sum of differences between the census strings of the warped image
L(W(x;,u)) and [;:

1 N1

Gi(x,u) = W 3 1 = [Ci(h,W(x,u)) =Ci(I,x)], Vx € Q. (6)

The Hamming distance between the Ternary Census transformed images has the nice prop-
erty that it is invariant to most changes of acquisition noise and also to changes of the global
illumination.

The depth fidelity is calculated directly by matching the 3D points. Traditional depth data
terms, as shown in [18], are calculated by minimizing the pixelwise temporal derivatives in
the depth image space Dy, (x1,u) = Dy(W(x1,u)) — D1 (X1) — up. These traditional pixel-
wise constraints fail in homogeneous regions with low depth structure. We propose a flow
error metric based on the Iterative Closest Point (/CP) algorithm [31] which is calculated as
patchwise point differences directly in 3D space to match the local surface structure. Since
we have two depth acquisitions with known camera intrinsics we can calculate the residual
error between both point clouds X; and X, according to the flow u by

1
Gox,w) = 37 Y, X)) -u@) -Xi(y)l2, VxeQ, 7
YEN(X)

where the point X (y*) is denoted as the optimal correspondence to X,(y), which in the
context of SF is the closest point to the transformed X;(y), i.e.

y" = argmin|[X;(x) —u(x) = Xy (y)[2. ®)
yeQ

When matching 3D patches instead of depth pixel values the method gets more robust against
homogeneous depth regions and acquisition noise. Further, the direct matching in 3D does
not lead to information loss due to back-projection and interpolation into the image space.

Both the intensity (6) as well as the depth fidelity term (7) are highly non-convex in
the argument u. Hence, a simple linearization of the data term is not longer sufficient. We
therefore propose to perform a direct second-order Tailor expansion of the pointwise data
terms around an initial flow field u, similar to [28]. This is defined by

Gi(x,u) = G;(x,u) = Gi(x,up) + VG;(x,u0) (u —up) + (u—up)” V>Gi(x,u0) (u —up),
9

where i = {D,I}. The second derivative of the data term V>G;(x,ug) must be, by definition,
a positive semi-definite matrix to ensure convexity. For simplicity we use a positive semi-
definite approximation of the Hessian matrix, defined as

Gx(x,u0) ™ 0 0
V2G(x,u0) = 0 Gyy(x,up) " 0 : (10)
0 0 G (x, uO)jL
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where only positive second order derivatives are allowed while mixed derivatives are ne-
glected. In [27] it has been shown that this approximation will not harm the estimation
accuracy.

For regularization most of the common Optical Flow (OF) and SF approaches use a first
order regularizer or non-local variation with LI or L2 penalizer. While the quadratic (L2)
penalization leads to over-smoothed results, the Total Variation (7V) semi-norm (L/) en-
forces a piecewise constancy in the flow field, which is only valid for simple translational
movements. To avoid these disadvantages we use a higher order model, namely the Total
Generalized Variation (TGV) of second order, proposed by Bredies et al. [3]. It not only
includes the first derivative but also the second order derivatives to approximate the SF' by
piecewise affine transformations. The primal definition of the second order TGV is formu-
lated as

R(u,v):min{a]/ |Vu—v|dx+0lo/ |Vv|dx}, (11)
uv Q Q

where u denotes the flow field and v its first derivative. The scalars o, o € R are used to
weight each order.

Although the TGV shows edge preserving capabilities we additionally use the edge in-
formation from our input depth images to refine this regularization. Henceforth, we include

an anisotropic diffusion tensor T%, known as the Nagel-Enkelmann operator [15], based on

the input depth image D;. This tensor is calculated by 72 = exp (=B |VD:|") nn” +ntn'T,
where n = ‘ggi‘ is the normalized direction of the depth image gradient and n'- is the normal

vector to the gradient. The scalars 3,7 € R adjust the magnitude and the sharpness of the
tensor. The anisotropic diffusion tensor not only weights the motion gradient but also orients
the gradient direction during the optimization process. This regularization term has shown
great success in stereo reconstruction [19] and depth image upsampling [6].

With the combination of convex TGV regularization and anisotropic weighting we achieve
smooth transitions between flows, typically occuring at object rotations and non-rigid move-
ments, while sharp flow boundaries between moving objects can still be preserved.

Based on our definitions, the final energy in our optimization model is defined as

min{}q/ W|G,|dx+xD/ w|Gp|dx + a1/ |T%(Vu—v)\dx+ao/ |Vv|dx} . a2
u,v Q Q Q Q

where Ap,A; € R are parameters to weight the individual data terms. The pixelwise confi-
dence for the data measurements is given by w: Q — [0, 1]. This confidence is set to 0 where
no depth measurements are available, e.g. for stereo sensors at occluded regions, otherwise
itis 1.

3.2 Numerical Implementation

The proposed optimization problem is convex but non-smooth due to the L/ norms and
the possibility of zeros in the weighting parameter w. Therefore, the optimization of this
problem is not a trivial task. Since (12) is convex in u and v we can make use of the dual
principle. After introducing Lagrange multipliers for the constraints and biconjugation using
the Legendre Fenchel transform (LF) we are able to reformulate the problem as a convex-
concave saddle point problem discretized on a Cartesian image grid of size M X N .
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This saddle point problem is solved using the primal-dual optimization scheme proposed
in [4]. This scheme provides a fast convergence rate and is parallelized in the implementation
resulting in high frame rates. The local approximation of the SF' constraints are only valid
for small displacements. Therefore, the primal-dual calculation is embedded into a coarse-
to-fine framework. We employ image pyramids with a downsampling factor of v = 0.8 for
this purpose. The iterative optimization runs in 5 warps with 50 iterations per level. Due
to warping in 3D space the camera projection matrix has to be adjusted according to each
pyramid level by K; = Kdiag([v', V', 1]),Vi = 0...L, where K; is the camera matrix at level
i and i = 0 is the finest level. The solution of each level is propagated to the next finer
level starting with uy = 0, v; = 0 at the coarsest level. The weighting parameters for all
terms in our energy are kept constant over all levels. The first and second order derivatives
are computed using standard central differences. Instead of an exhaustive search we use a
standard kd-tree for patchwise Closest Point (CP) search to increase the computation speed,
where the patch size is set to 5 x 5. The TCT term is calculated using the minimum over
multiple window sizes ranging from 5 x 5 to 11 x 11. Due to lack of space, we will outline
the detailed numerical optimization scheme in the supplementary material.

4 Evaluation

In this section we provide an extensive qualitative and quantitative evaluation of our method,
which we further address as CP-Census. An analysis of the properties and the effects of
different terms in our method on real and synthetic datasets is shown in 4.1. A numerical
evaluation in terms of speed and accuracy compared to state of the art (SOTA) Scene Flow
(SF) methods is given in 4.2. For visual real world evaluations we used a PMD Nano Time
of Flight (ToF) camera [16] and a Microsoft Kinect for Windows v2 camera (K4Wv2)?.
Following [9] and [12], the flow error is calculated with the commonly used error measure-
ments Average Angular Error (AAE) and the End Point Error (EPE) in 2D and 3D space. For
the Middlebury evaluation we additionally provide the disparity error RMSy .. The average
runtime over all experiments is 1.47s computed on a Nvidia GTX680 GPU. Further visual
evaluations are shown in the supplemental material.

4.1 Scene Flow Evaluation on Synthetic and Real Datasets

In this experiment we quantitatively evaluate our SF algorithm and the contributions of the
individual terms in our objective function compared to SOTA Optical Flow (OF) and SF
algorithms. We use a synthetic and a real dataset consisting of moving objects in a static
scene. In the synthetic dataset a cube is rotated and translated in front of a static background.
The scene was generated including depth and intensity image pairs as well as a groundtruth
SF. To simulate acquisition noise we applied Gaussian noise to the input data. To compare
the effects of different object movements we show the errors for a pure translation of 20% of
the object size in X direction (Ty), a pure translation of 20% towards the camera (77) and a
rotation of 15 degrees about the Z axis (Rz).

In Table | we compare our results with two SOTA OF methods, namely NL-TV-NCC
methods of Werlberger et al. [28] and Classic-NL-Full methods of Sun et al. [22] and the
currently best performing SF method of Hornacek et al. [12].

2The K4Wv2 developer kit is preliminary software and/or hardware and APIs are preliminary and subject to
change.
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GT OF
Tx = 20% T; = —20% Rz =15° k —

EPEsp  AAEsg  EPEsg  AAEsg  EPEsp AAEsp
NL-TV-NCC 0.282 5.61 0.191 3.07 0.291 5.06 m

Classic+NL-Full 0.260 4.57 0.303 3.29 0.388 5.68
CP-Census
Horndcek et al. [12] 0.089 3.85 0.090 3.30 0.056 2.43
CP-Census w/o tensor 0.096 3.92 0.117 3.32 0.088 3.25 b =
CP-Census TVLI 0.037 143 0.041 0.95 0.066 1.92 e, (&
CP-Census 0.035 1.42 0.042 0.95 0.053 1.67 e p 4

Table 1: Scene Flow evaluation on a synthetic dataset. Comparison of our method with SOTA
OF and SF methods at different object movements in terms of EPE and AAE in 3D. Further,
evaluation results of our methods are shown, where different terms are turned off. The best
result for each movement is highlighted and the second best is underlined. On the right side,
the input and results of our method for pure Z movement are shown.

The 3D error of the OF methods is calculated by a projection into 3D space with the
known depth maps. We further show a visual evaluation on real acquisitions of freely moving
rigid and non-rigid objects acquired by the PMD Nano and the K4Wv2 camera in Fig. 3.

Due to the additional depth information in our model it is obvious that we significantly
outperform traditional OF approaches. For object rotations or non-rigid movements one
can see the advantage of the higher order regularization in our model. The modeling of
smooth transitions is hard for first order regularization (TVLI) while our higher order model
can cope with these types of transitions. While the first order approaches work well for
pure translational movements they are not suitable to model smooth flow transitions such
as rotations or non-rigid movements since it enforces piece wise constant solutions in the
flow field. Furthermore the anisotropic tensor has a big impact on the quality since it bounds
the flow field at object boundaries. The RGB-D PatchMatch approach of Hornacek et al.
[12] delivers comparable results for the flow magnitude (EPE) but lacks in angular precision
(AAE). Further it has problems at larger noise levels or illumination changes which appear
at the PMD Nano sequences (Fig. 3).

4.2 Middlebury Evaluation

In order to perform a quantitative comparison to more SOTA SF methods, we evaluate our
method using an existing scene flow benchmark dataset. We follow [1, 8, 12, 13, 17, 18, 30],
which use the rectified stereo intensity and disparity maps from the Middlebury Cones, Teddy
and Venus datasets [20] to simulate scene flow. In this setting, two images are acquired with
a pure horizontal camera movement. This allows to recover a ground truth scene motion
at every point in a cluttered scene with pure X movement, where the 3D movement in Y
and Z direction is zero and the movement in X-direction is given by the baseline. As in the
compared methods, the disparity maps are used to simulate the output of the depth sensor.
The calculated SF is backprojected into the image space for a direct comparison with the
ground truth disparity maps. In Table 2 the evaluation results compared to several SOTA
methods for SF from stereo and SF from depth and intensity data are shown.

What can be clearly seen is that our method delivers a SF' quality which is superior
compared to other SOTA methods in most cases. We deliberately use the same parameters
for all three datasets even though the Venus dataset has other lighting and surface conditions.
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Cones Teddy Venus

EPEor | RMSy, | AAEoF EPEor | RMSy, | AAEoF EPEor | RMSy, | AAEoF
Basha et al. [1](2 views) (st) 0.58 N/A 0.39 0.57 N/A 1.01 0.16 N/A 1.58
Huguet and Devernay [13] (st) 1.10 N/A 0.69 1.25 N/A 0.51 0.31 N/A 0.98
Hadfield and Bowden [9] 1.24 0.06 1.01 0.83 0.03 0.83 0.36 0.02 1.03
Quiroga et al. [18] 0.57 0.05 0.52 0.69 0.04 0.71 0.31 0.00 1.26
Horndcek et al. [12] 0.54 0.02 0.52 0.35 0.01 0.16 0.26 0.02 0.64
CP-Census 0.40 0.03 0.04 0.31 0.02 0.05 0.15 0.00 0.41

Table 2: Evaluation on the Middlebury dataset. The error is measured by EPE / AAE in
2D, and RMS in depth. The best result for each dataset is highlighted and the second best is
underlined. Methods that calculate SF from stereo are marked with (st).

O .

(@) intensity (b) nL-nce (¢) cp-CensusviLi (d) CP-Census wio tensor (€) Horéek et al. [12] (f) cp-census

s |

Figure 3: Evaluation of different SF methods on real image sequences. In (a) the input
intensity images are shown. In the first row the results of the Middlebury Cones sequence, in
the second row the flow of a rotated box with the K4Wv2 and in the third row a hand closing
sequence (non-rigid movement) acquired with the PMD Nano are shown. Each scene is
evaluated for NL-NCC OF (b) CP-Census without a second order regularization (c), CP-
Census without anisotropic diffusion (d), the method of Hornacek et al. (e) compared to our
full method (f). The motion key is shown in the bottom right of (f). Figure best viewed
magnified in the electronic version.

5 Conclusion

We proposed a method for the estimation of scene flow from depth and intensity data. The
estimation is formulated as a convex energy minimization problem using sophisticated non-
convex data terms together with an anisotropic higher order regularization. Our method
better handles scenes with low texture or low structure and is robust to illumination changes.
Further, it can cope with smooth flow transitions, which occur at rotations or non-rigid move-
ments, while sharp boundaries of the flow field are preserved. In a quantitative and qualitative
evaluation we show that our method clearly outperforms existing state of the art approaches.
As a future perspective we want to make use of the high estimation quality in applications
such as non-rigid structure from motion or depth image superresolution and camera pose
estimation of dynamic scenes.
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