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Abstract

Mean Shift today, is widely used for mode detection and clustering. The technique
though, is challenged in practice due to assumptions of isotropicity and homoscedasticity.
We present an adaptive Mean Shift methodology that allows for full anisotropic cluster-
ing, through unsupervised local bandwidth selection. The bandwidth matrices evolve
naturally, adapting locally through agglomeration, and in turn guiding further agglom-
eration. The online methodology is practical and effecive for low-dimensional feature
spaces, preserving better detail and clustering salience. Additionally, conventional Mean
Shift either critically depends on a per instance choice of bandwidth, or relies on of-
fline methods which are inflexible and/or again data instance specific. The presented
approach, due to its adaptive design, also alleviates this issue - with a default form per-
forming generally well. The methodology though, allows for effective tuning of results.

1 Introduction
‘Mean Shift’ ([15, 7], MS) is a powerful nonparametric technique for unsupervised pattern
clustering and mode seeking. References [11, 3] established it’s utility in low-level percep-
tion tasks such as feature clustering, filtering and in tracking. It has been in popular use since,
as a very useful tool for pattern clustering of sensor data ([28, 14] for example). It has also
found niche as a preprocessor (a priori segmentation, smoothing) before higher level image
& video analysis tasks such as scene parsing, object recognition, detection ([22, 35, 20]).
Image segmentation approaches such as Markov Random Fields, Spectral clustering, Hier-
archical clustering use it as an a priori segmenter with improved results ([22, 26, 21, 31, 30]).

Mean Shift methodologies though, employ some assumptions and have some limitations,
which may not be desirable. Its popular standard form, [11], utilizes fixed, scalar bandwidth
assuming homoscedasticity and isotropicity. Being homoscedastic, it also requires proper
bandwidth choice on a per instance basis. The adaptive Mean Shift variants, [12, 16], ascer-
tain variable bandwidths, but they still assume isotropicity. They also make use of heuristics
which are not flexible, and lack clustering control. Offline bandwidth selection methods
for Mean Shift ([6, 17, 10]), typically estimate a single, global bandwidth, and/or are data
specific/non-automatic. As indicated in Fig.1 - isotropic/scalar bandwidths tend to smooth
anisotropic patterns and affect partition boundaries, while global/homoscedastic bandwidths
are inappropriate when clusters (or modes) at different scales need to be identified.
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(a) 3D Clustering result (23 clusters) over image data (left, L*a*b* space) by the proposed approach. 1-sigma final
trajectory bandwidths have been overlaid over the converged modes. The segment image is shown on right.

(b) Comparitive results with standard MS (left) and variable-bandwidth isotropic MS ([16], right), at similar clus-
tering levels, 25 & 27 respectively, are shown. Final mode locations have been indicated over the cluster plots. MS
with correctly chosen bandwidth detected more coherent modes than [16], but looses partition saliency (bushes,
water, sky in background). [16] better adapts to scales but oversegments at places, and smooths over others (face).
Both smoothed over details, failed to detect some modes at lower scales (trouser edges, maroon on shirt & shoes).
In general, conventional MS had a typical tendency to over-segment heavily or compromise partition boundaries.

Figure 1: Exemplar illustrative result of our approach, AAAMS (a), is shown along with conventional MS results
(b), at comparable clustering levels. As is indicated by the plots and segment images, AAAMS effectively adapts
to local scale and preserves anisotropic details, affecting more salient partitions.

We present a Mean Shift methodology which is anisotropic and locally adaptive. It is
able to leverage guided agglomeration for unsupervised bandwidth selection (Fig.1, 5). This
results in robust mode detection, with increased partition saliency. Also as a consequence, a
low valued parameter set performs nicely over a wider range of data instances (Sec. 2.1).

Clusters arise on the fly in the proposed approach, as a consequence of agglomeration of
extant clusters. Local bandwidths (Secs. 1.1, 2) which evolve anisotropically every iteration,
are associated with each cluster; by design, all members of a cluster converge to the same
local mode. By evolving as function of a cluster’s aggregated trajectory points, these band-
widths are able to adapt to the underlying mode structure (shape, scale, orientation) - and in
turn, guide future cluster trajectory and agglomeration. The supplementary also presents a
useful result - a convergence proof when full bandwidths vary between Mean Shift iterations,
as is the case here. We refer to our approach as online because it’s an on the fly unsupervised
procedure; with simple bookkeeping doing away with re-calculations.

1.1 Motivation and Background

We utilize the exposition style of [5]. Let {xi}ni=1 ⊂ Rd , be a set of d-dimensional data
points with their sample point kernel density estimate (KDE) being p(x) = ∑

n
i=1 p(xi)p(x|xi) =

∑
n
i=1 pi

1
ci

K(‖x−xi‖Σi ). Stationary points of the KDE can be estimated by evaluating the density
gradient and setting it to zero. This gives rise to the Mean-Shift fixed point iteration :

xτ+1 = f (xτ ) (1a)

f (xτ ) =

( n
∑
i=1

pi
1
ci

K
′
(‖xτ − xi‖Σi )Σ

−1
i

)−1
×
( n

∑
i=1

pi
1
ci

K
′
(‖xτ − xi‖Σi )Σ

−1
i xi

)
(1b)

K(t), t ≥ 0, is a d-variate kernel with compact support satisfying some regularity constraints,
mild in practice ([11, 5] for details). ‖x− xi‖Σi ≡ ((x− xi)

T Σ
−1
i (x− xi))

1/2, is the Mahanalobis
metric. The point prior pi ≡ p(xi) is usually taken as 1/n. ci is a normalizing constant depending
only on the covariance matrix, Σi (kernel bandwidth), associated with each data point. The
bandwidth, Σi, is roughly an inverse measure of local curvature around xi. It linearly captures
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the scale and correlations of the underlying data. τ indicates the iteration count. In practice,
since K(t) is taken with truncated support, the summations are only over n′ neighbors of xτ ,
with n′ � n. The vector m(xτ ) = f (xτ )− xτ , is referred to as the Mean Shift. It’s a bandwidth
scaled version of ∇p(x), is free from a step size parameter, is large in regions with low p(x)

and small near the modes. Starting at a data point, xτ=0
i ≡ xi, the fixed point update is run

multiple times till convergence. The resulting points, xτ≥1
i is referred to as the trajectory of

xi, tracing a path to the local mode. The technique thus, is able to locate modes and partition
feature space, without a priori knowledge of partition count or structure.

The above hinges on selecting reasonable bandwidth matrices Σi. Good bandwidths cap-
ture the underlying local distribution effectively. In our approach, data points (pertaining
to a cluster) converging to a common local mode share a common bandwidth - one which
reflects this mode’s structure, and to an extent, its basin of attraction ([11]). We refer to it as
the local bandwidth ([10] utilizes local bandwidths in a related sense).

In online unsupervised usage, almost all Mean Shift variants for clustering, for example
[11, 30, 37, 27], work under the restrictive assumptions of homoscedasticity and isotropicity
(Σi = σ2I, standard fixed bandwidth Mean Shift). The scale parameter σ has to be set care-
fully based on the dataset instance. [36] utilizes set covering based iterative agglomeration
for improved efficiency. Coverage is ensured through overlaps of small fixed homoscedas-
tic bandwidths. Some applications only assume isotropicity (Σi = σ2

i I, adaptive / variable-
bandwidth Mean Shift). σi is estimated using a variation of the following two heuristics
([12, 16]) - 1) kth nearest neighbor, xk

i , distance heuristic → σi ∝ ‖xi− xk
i ‖, or 2) Abramson’s

heuristic → σi ∝ σo(π(xi))
−1/2, where π(x) is the pilot density estimate obtained by first running

mean shift with analysis bandwidth, σo. They have found more use in smoothing type appli-
cations as reported in [25, 19]. Variants have also been used in tracking scenarios, where the
bandwidths are adapted in a task specific fashion (see [18, 9], for example). [23, 33] adapt
isotropic bandwidths to object scales, to unimodally track, search for them. The topological,
blurring, evolving variants for clustering (like [27, 30, 37, 4, 29]) use isotropic bandwidths.
They are primarily aimed at increased efficiency, with results on par with standard mean
shift. [32] presents improvements over the somewhat related Mediod Shift. They propose
usage of their algorithm as initialization for Mean Shift, for increased efficiency.

In offline settings, [10] presents a supervised methodology. Training data is processed
with analysis bandwidths to select local bandwidths based on neighboring partition stability.
The estimated bandwidths are then used to partition similarly distributed test image data.
Only recently were automatic full bandwidth selectors for density gradient estimation pro-
posed in [17, 6], for offline settings. These focus on obtaining good data density gradients
(as opposed to clustering) and optimize based on the mean square integrated error (MISE). A
single global bandwidth is estimated for the given data, and as the authors themselves note,
the involved computations are not straighforward.

A very useful variant is Joint Domain Mean Shift, [11], which is used to create parti-
tions jointly respecting the dataset’s multiple feature domains which are mutually indepen-
dent; For example, 〈color,space〉 in color based segmentation & smoothing, and 〈color, f low〉
in motion segmentation. When x =

[
xrT xsT ] with (xr⊥xs) |x, and utilizing two separate ker-

nels, Kr, Ks, we’ll have p(x) = ∑
n
i=1 p(xi)p(xr |xi)p(xs|xi). Eq.1b analogue would then come out to

be f (xτ ) =

(
∑

n
i=1 pi

1
c
′
i

J(‖xτ,r− xi
r‖Σr

i
,‖xτ,s− xi

s‖Σs
i
)Σ−1

i

)−1

×
(

∑
n
i=1 pi

1
c
′
i

J(‖xτ,r− xi
r‖Σr

i
,‖xτ,s− xi

s‖Σs
i
)Σ−1

i xi

)
, where c

′
i

is the normalization constant, J(t1, t2) ≡ K
′
r (t1)Ks(t2) = Kr(t1)K

′
s (t1),∀t1, t2 ≥ 0, and Σi =

[
Σr

i 0
0 Σs

i

]
. Typi-

cally, but not necessarily, xs may lie on a spatial manifold - imposing structure to data which
is utilized. Instances in literature use fixed global scale parameters σ r and σ s, which have
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the aforementioned limitations. As noted in [31] on color segmentation, σ r and σ s need to
be selected carefully. Good choices are not always possible, with segments being too coarse
or too fine at times (Figs. 3, 5). Reference [34] utlizes an anisotropic Σs

i for visual data seg-
mentations. Every data point’s associated bandwidth, Σi, is modulated multiple times in each
iteration, until convergence is achieved. Modulation heuristics have been provided, to be
deployed as per task. The spatial bandwidth Σs

i is parameterized as function of eigenvectors
of neighborhood data covariance. Σr

i is taken to be an isotropic scalar dependent on Σs
i .

2 Methodology
A data point, xi, is alternatively represented as xi,u - the first index value being its unique
identifier as before and the second index indicating its current, exclusive membership to a
cluster, u∈ {1, . . .n} 1. A cluster u’s constituent data points is denoted by the set , Cu = {xi,u | ∃ i∈
{1, . . .n}}. By algorithm design, clusters are merged only when they are tending towards the
same mode - thus all member points of a cluster, u, will eventually converge to a common
local mode, say µu. They hence, are also taken to share a common local bandwidth, Σu.
This bandwidth develops every iteration when the cluster u’s trajectory points set, Tu , gets
additional elements. The set of clusters surviving at iteration, τ, would be Uτ = {u |Cu 6= /0}.
|Uτ | would indicate its cardinality. At beginning, at τ = 0, each point trivially forms a separate
cluster→U0 = {1, . . .n} , Cu = {xi=u,u}, ∀u∈U0. Given the initialization, each extant cluster u∈Uτ

will always contain the initial point, xu,u - which we refer to as its principle member.
At any iteration τ, for each extant cluster u, mean shift updates happen for only the princi-

ple member, xu,u; with the first iteration running over trivial clusters. The resulting trajectory
is specified as xτ≥1

u,u or simply uτ . A cluster’s trajectory might end when it gets merged or
converged. In general, each data point, xi, started out as a trivial cluster, and had or still has
a trajectory - it’s trajectory set being {xτ=1:end

i }. ′end′ being the iteration at which the trajec-
tory ended; else the current iteration. Note that the data point xi itself is not included in this
set. For any surviving cluster u, then, the complete set of all agglomerated trajectory points
associated with it, would be Tu = {∪{xτ=1:end

i } | xi ∈Cu} - basically a union of all the members’
trajectory sets. uτ is indicative of the cluster u’s location. At convergence, uτ would be the
location of a local mode. u’s members would then be comprising of data points pertaining
to that mode and its basin (Fig. 1(a)). The data density in the immediate vicinity of uτ ’s
current position is indicated as ρ(uτ ), or simply, ρu. We use operator Π to retrieve the cluster
identifier of an arbitrary data point; so Π(xi,u) = u. The n′ data points in uτ ’s neighborhood are
denoted as Nex(uτ ), and the clusters containing them as G = {∪Π(y) | y ∈ Nex(uτ )}.2

The methodology for anisotropic, agglomerative, adaptive Mean Shift (AAAMS) is pre-
sented as a pseudo code in Alg. 1. At every iteration, the following steps are run for each
surviving cluster that has not converged →
1) Mean shift update is computed and the cluster’s location is updated. No merges happen before the first update.
2) Nearest neighbors about the current location are ascertained - they are utilized for cluster merges, and for the mean shift

update in subsequent iteration.
3) When merge criteria are met, either some clusters (owners of the neighborhood points which lie within epsilon) get

merged into this cluster, or this cluster gets merged into one of them.
4) If the incumbent cluster survived after the merge, its bandwidth is updated.
5) Optionally, if the cluster has converged, its location could be perturbed a bit. It is, then, not taken out of consideration

in subsequent iteration.

1The second index is left out when the membership is apparent or inconsequential. We similarly ease out the notations whenever
pertinent, to simplify exposition without loss of intuition.

2Since a cluster corresponds one-to-one with its principle member, principle member’s trajectory is at times referred to as cluster
trajectory. Similarly, convergence of trajectory is at times referred to as cluster converging. τ , apart from indicating iteration, also
differentiates between a trajectory point and a data point. The cluster trajectory, uτ ≡ xτ≥1

u,u , is the trajectory resulting from data
point xu,u . The cluster u’s current location refers to current position of the principle member, indicated by uτ .
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Algorithm 1 : AAAMS - Anisotropic Agglomerative Adaptive Mean Shift

Function : AAAMS 〈{xi}n
i=1〉 with xi ∈ Rd

Returns : 〈U∗,C∗, {µu}u∈U∗ , {Σ∗u}u∈U∗ 〉
## ConvergenceCriteria → ‖mu‖ ≤ δ

Uo = {1, . . .n} ; Cu = {xu} , xo
u = xu, Σu = σ2

baseId , ∀u ∈U0

τ = 0 ; λ = 5 ; δ =Convergence epsilon

mu = Large ∈ Rd , Tu = φ , ∀u ∈U0

While ∃u ∈Uτ s.t. ‖mu‖> δ

ForEach u ∈ Uτ s.t. ‖mu‖> δ

uτ+1 =


Eq.4

Eq.2b

Eq.3

ESS(u) < λ

ESS(g) ≥ λ , ∀g ∈ G

otherwise

mu = uτ+1−uτ ; Tu = Tu ∪uτ+1

Get Nex(uτ+1)

ForEach y ∈ Nex(uτ+1) or till Cu 6= /0

I f Π(y) = u or CΠ(y) = φ T hen Continue

I f
∥∥uτ+1− y

∥∥> ε T hen Continue

I f !MergeCheck
〈
uτ+1,y,mu,yτ=1− y,u,Π(y)

〉
T hen Continue

I f ρu > ρΠ(y)

T hen

Cu =Cu ∪CΠ(y) ; CΠ(y) = /0

Tu = Tu ∪TΠ(y) ; TΠ(y) = /0

Else

CΠ(y) =Cu ∪CΠ(y) ; Cu = /0

TΠ(y) = Tu ∪TΠ(y) ; Tu = /0

EndForEach

I f Cu = φ T hen Continue

Σu =

 Eq.6

Σu

ESS(u) ≥ λ

otherwise

## Optionally Perturb
〈

uτ+1 , mu
〉

i f ‖mu‖ ≤ δ

EndForEach

Uτ+1 = {u | u ∈ Uτ ,Cu 6= /0}
τ = τ +1

EndWhile

U∗ =Uτ ; C∗ =Cu , ∀u ∈Uτ ; Σ∗u = Σu , ∀u ∈Uτ

EndFunction

For feature spaces that can be decomposed into independent subspaces, the above can be extended to multiple domains. The update
equations would then utlize multiple kernels. Basically, for each domain, a 〈σbase , ε

〉 pair needs to be set.

For example, for joint domain Mean Shift (Sec:1.1), we’ll have
〈

σr
base , εr

〉
&
〈

σs
base , εs

〉
for the two domains. We’ll have then

Σbase =

[
σr2

baseIr 0

0 σs2
baseIs

]
& Σu =

[
Σr

u 0
0 Σs

u

]
. Σr

u & Σs
u would be evaluated from Eq.6. Eq.2b analogue would be f (uτ ) =

(
∑
∀g∈G

1
cg Σ
−1
g ∑
∀i|xi,g∈Nex(uτ )

J(‖uτ,r − xi
r‖

Σru
, ‖uτ,s − xi

s‖
Σs

u
)

)−1
×
(

∑
∀g∈G

1
cg Σ
−1
g ∑
∀i|xi,g∈Nex(uτ )

J(‖uτ,r − xi
r‖

Σru
, ‖uτ,s − xi

s‖
Σs

u
)xi

)
; likewise for others.

2.1 Update Equations

Taking pi = 1/n and limiting summations to the neighboring points, Nex(uτ ), the fixed point
iteration, Eq. 1a-1b, over a cluster u (rather xu,u) can be reformulated/reorganized as a local
bandwidth based decomposition :

uτ+1 = f (uτ ), whereuτ=0 ≡ xu,u (2a)

f (uτ ) =

(
∑
∀g∈G

1
cg

Σ
−1
g ∑
∀i|xi,g∈Nex(uτ )

K
′
(‖uτ − xi‖Σg )

)−1
×
(

∑
∀g∈G

1
cg

Σ
−1
g ∑
∀i|xi,g∈Nex(uτ )

K
′
(‖uτ − xi‖Σg )xi

)
(2b)

Eq. 2b would be exactly the same as Eq. 1b at τ = 0, when all points form trivial clus-
ters. When local homoscedasticity in neighborhood of uτ is assumed with the cluster’s own
bandwidth Σu taken as bandwidth estimate for neighborhood Nex(uτ ), Eq. 2b simplifies 3 to :

f (uτ ) =
∑∀i|xi∈Nex(uτ ) K

′
(‖uτ − xi‖Σu )xi

∑∀i|xi∈Nex(uτ ) K ′ (‖uτ − xi‖Σu )
(3)

If global homoscedasticity and isotropicity is assumed, Eq. 2b takes the form of standard
mean shift update, where the bandwidth is specified through a fixed scalar σbase :

f (uτ ) =
∑∀i|xi∈Nex(uτ ) K

′
(‖(uτ−xi)

T (uτ−xi)/σ 2
base‖)xi

∑∀i|xi∈Nex(uτ ) K ′ (‖(uτ−xi)
T (uτ−xi)/σ 2

base‖)
(4)

3Eq.3 gets us a particularly insightful interpretation. Note that ‖uτ − xi‖Σu could be thought of as a partial likelihood measure
of the data point xi belonging to the cluster u. Consider the conditional → p(xi/uτ ;u) = K

′
(‖uτ−xi‖Σu )/∑... K

′
(‖uτ−xi‖Σu ) , with the

summation in denominator normalizing the distribution. The fixed point update from Eq.3 would then come out to be uτ+1 =
∑... p(xi/uτ ;u)xi. So the updated cluster trajectory uτ+1 is just the neighborhood data expectation, conditioned only under the cluster’s
own distribution. In effect, this serves to guide/update a cluster’s trajectory based only on the properties (bandwidth) it has itself
ascertained (till τ).
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Each trivial cluster utilizes fixed base bandwidth to begin with, employing Eq. 4 for
mean shift updates. Benign clusters form and start moving up on some modes. As soon as
a cluster accumulates enough trajectory points for full bandwidth estimates (Sec.2.2) to be
significant (u has moved up to denser regions by then), it switches to anisotropic updates,
given by Eqs. 3 & 2b. A reasonable test of significance for Σu estimates, is to check if the
kernel weighted point count or Effective Sample Size (ESS, [13]) is above some value, λ .

ESS(u) =
∑∀v∈Tu

K
′
(
∥∥Tu− v

∥∥
Σestimate

u
)

∑∀v∈Tu
K ′ (‖0‖Σestimate

u
)

(5)

Tu indicates the mean of the trajectory set. The anisotropic update Eq. 3 is used when the
cluster has an ESS(u)≥ λ , and the more confident update Eq. 2b is used, when ESS(g)≥ λ , ∀g ∈
G - when all the neighboring clusters too have confident enough bandwidth estimates 4. As
a binomial rule of thumb ([13]), λ = 5 is chosen as the minimum ESS, which is analogous to
choosing 5 as the minimum individual expected cell counts in a χ2 test of independence.

So starting with the initial base scalar, σbase, the bandwidth matrices evolve by them-
selves. The nice part is that just a low base value suffices for reasonably dense data, with the
bandwidths scaling data driven thereon and adapting to the local structure’s scale, shape and
orientation. σbase thus becomes indicative of the minimum desired detail in the data space.
This is opposed to traditional Mean Shift - where the bandwidth scalar is indicative of the
scale at which the data space has to be partitioned.

2.2 Bandwidth Estimation

Bandwidth estimates based on a cluster’s member data point locations are not reliable ([10]
notes this too). A subset of point locations in isolation cannot be considered as representative
of underlying distribution. The underlying local distribution is actually a localized subset of
the joint non-parametric density represented by the entire dataset - it has significant contri-
butions from neighboring structures as well. The local structure could also be asymmetric
and/or without tail(s). A solution lies in considering points which arise from mean shift as-
cents over the mode the cluster is converging to - the cluster trajectory set, Tu. We use the
variance of Tu with respect to the underlying density as an estimate, Σu. As Tu builds up each
iteration, so does Σu.

Σu =
∑∀v∈Tu

ρ(v)vvτ

∑∀v∈Tu
ρ(v)

−ηuη
T
u + ξ I, whereηu =

∑∀v∈Tu
ρ(v)v

∑∀v∈Tu
ρ(v)

(6)

ρ(v) is the data density in the immediate vicinity of a point v ∈ Tu. This is evaluated using
σbase for consistency across clusters. ηu &Σu are then basically the expectation and variance
of the localized distribution. In practice, a small regularizer, ξ , has to be added to the diag-
onals of Σu to prevent degenerate fitting in sparse regions, and for numerical stability.While
computing anisotropic updates, eigenvalue decomposition is employed and any eigenvalues
of Σu which fall below ξ , are clamped to it. Note that Σu always remains positive definite.
Also note that all summations are computed on the fly.

Eq. 6 could also be thought of as density weighted trajectory set variance. As a cluster
approaches a mode, mean shift trajectory points get more concentrated and are weighted
more, leading to a conservative but more localized and robust estimate – more immune to
long tails. Figs. 1, 5 plot the bandwidths and modes at convergence, for color and point data.

4We note empirically for dense data, as in images, a simple cluster size sufficiency check works well. For joint domains, a cluster
could switch to anisotropic updates when it has atleast max(dim(xr), dim(xs))2 members.
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(a) Effects of varying the detail and vicinity parameters on a brush painting with smudged colors.

Acrylic & Oil
〈
4,9, .5,16

〉 〈
9,16, .75,25

〉 〈
16,25,1,36

〉 〈
25,36,2,81

〉 〈
36,49,1.5,64

〉 〈
49,64,1.5,100

〉 〈
64,81,1,121

〉
(b) Parameter sensitivity plots. Each of 〈σr

base
2 ,σs

base
2 , ε2

r , ε2
s
〉 was varied while keeping others constant. Their effects

on number of clusters, their average size, and iterations for convergence are plotted. Results were averaged over 33
images. As with conventional MS, color domain parameters are understandably more sensitive. δ = .01 was used.

Figure 2: For joint domain AAAMS over images, we show the qualitative and quantitative effects of varying
the detail and vicinity parameters, 〈σr

base
2 ,σs

base
2 , ε2

r , ε2
s
〉. Post processing was disabled, except for enforcing cluster

contiguity. As can be seen, if the need be, a good control over smoothing and segmentation levels can be exercised.

2.3 Cluster Merging
For any given data points, if their mean shift trajectories intersect, they will converge to a
common local mode. Thus in the vicinity of a data point’s trajectory (which is moving up
some mode) - any data points in sufficient proximity, having their shift vectors deemed to
be intersecting with this trajectory, could be clustered together. They will eventually end up
converging on the same local mode. So we basically consider the data points in the vicinity
of a cluster trajectory, uτ - with an epsilon ε, delineating the vicinity. If a data point, y,
in vicinity is ascertained (in MergeCheck) to be heading to the same mode as uτ , then by
transitivity - all the members of its parent cluster, Π(y), are heading to that mode too - the
clusters u and Π(y) , can then be merged. The cluster which is higher up the mode (higher
density) assimilates the other cluster into itself, thus accelerating convergence to the mode.
This also helps in avoiding spurious merges.

MergeCheck - This is intentionally specified as a generic function returning a true/false
value. It could be implemented to suit different feature spaces and clustering criteria. The
more holistic this check is, the larger the operating range of ε can be (assuming the distance
norm holds up), without impacting clustering stability. In our experiments, we used a very
lightweight generic implementation that worked well over considered data spaces - basically
verifying through inner product checks that 1) relative distance between uτ+1 and y is de-
creasing and 2) Mean shift bearings 5 at uτ+1 and y are in the same direction. We note though
that divergence measures like Bhattacharya (Sec. 2.4), kernel induced feature space met-
rics ([26]), information-theoretic ones like Renyi’s entropy ([14]) seem viable, interesting
possibilities for MergeCheck. We are yet to experiment with them.

2.4 Post Processing

Once data has been partitioned, a post processing step merges clusters with proximate modes,
and ensures a minimum cluster size (in conventional Mean Shift, clusters are delineated only
during the post process). Additionally for structured data, cluster contiguity could be en-
forced. We use graph operations. For structured data as in images, adjacency connections
between clusters can be added naturally using a spatial grid structure. For unstructured data,
connections between a cluster and all clusters within a reasonably large distance threshold
(mode to mode distances) were added, to ensure a connected graph. Bhattacharya diver-

5The bearing at uτ+1 is mu. The bearing at y, given by yτ=1−y , is the mean shift vector resulting from the first iteration over the
trivial cluster containing y; it’s stored up for consequent use.
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Algorithm 2 : Post Processing

• (For structured data only) For each cluster, use spatial adja-
cency to ascertain the disconnected components (highest den-
sity/mode locations for these small disconnected point sets
need to be recomputed). Each disconnected component forms
an additional separate cluster thereon.

• Build the adjacency graph.
• Merge all clusters which fall below minimum desired size, to

the closest adjacent cluster until no such remain.
• For each remaining cluster, using its constituent points, com-

pute the density weighted variances, similar to Eq.6 - this is
representative of the cluster’s stand-alone distribution and al-
leviates tail influences.

• For each pair of remaining clusters {a, b}, con-
nected by an adjacency edge, evaluate →

dB = 1
8
(
µa −µb

)T
(

Σa+Σb
2

)−1 (
µa −µb

)
+ 1

2 ln

 det
(

Σa+Σb
2

)
√

det(Σa).det
(
Σb
)
.

If it falls below a certain threshold, merge the two.

Methods / Score PRI GCE VoI BDE
AAAMS .8230 .1589 2.1785 12.60
JMS∗ .7870 .1608 2.2484 13.34
Prior Art [21]
FullSpectralOverMS [21] 0.8146 0.1809 1.8545 12.21
JMS [8] 0.7958 0.1888 1.9725 14.41
NCut [21] - Ref. [27] 0.7330 0.2662 2.6137 17.19
MNCUT [21] - Ref. [6] 0.7632 0.2234 2.2789 13.17
GBIS [21] - Ref. [9] 0.7139 0.1746 3.3949 16.67
Saliency [21] - Ref. [8] 0.7758 0.1768 1.8165 16.24
JSEG [21] - Ref. [7] 0.7756 0.1989 2.3217 14.40

Table 1: Results on BSD300 [24]. We used a single parameter
set 〈20,36,1,64

〉 for AAAMS. For better results, dB was set from
{.25, .5,1,1.25,1.5,2}. JMS∗ parameters were selected per image to
maintain similar segmentation levels, with an eye on preserving
details, segment saliency.
For perspective, we also reproduce results from [21] of unsuper-
vised image segmentation methods. [21] selects segment levels
per image. Top three values for each index are colored as rgb.
AAAMS performs best overall - it’s clearly ahead in PRI & GCE,
and is a close second in BDE. Note that [21], which has the next
best values, operates over a priori Mean Shift segmentations.

gence ([2], dB) was used as the merging criteria. It takes into account not just the variance
normalized mode proximity, but also the disparity in variances themselves (Mahanalobis
measure is its special case). 0≤ dB ≤ 4 was a good range, with dB = 1 (somewhat analogous to
1− sigma2 disparity) performing well generally 6. Alg. 2 specifies the steps.

3 Results
The base scalar parameter σbase, in effect, regulates the minimum desired detail in the feature
space, the smoothing level. The vicinity parameter, ε, regulates cluster merge chances and
hence cluster sizes. For images, with AAAMS operating over joint domains of 〈color, space〉,
the detail and vicinity parameters would be 〈

σ r
base, σ s

base

〉 and 〈εr , εs〉 respectively (indicated in
Alg. 1). Fig. 2, shows quantitative and qualitative effects of their variation. Although a good
degree of control is possible to achieve a desired result, our experiments showed that any
low valued set gave nice results over a good range of images.

Due to agglomeration, the number of clusters decrease monotonically every iteration.
Only a fraction of clusters remain after the first couple of iterations; with the cluster count
falling rapidly in all early iterations. The scheme thus results in a drastic reduction in net
mean shift computes - as compared to the hitherto style of clustering only after convergence,
where computations happen for every data point, in each iteration. (for dense image data,
typically less than 5% of the clusters remain by the 11th or 12th iteration). This serves to off-
set the additional computational workload arising from the use of full bandwidth matrices.
Our straight up joint domain implementation was achieving similar timings on average to
standard Mean Shift, which uses scalar bandwidths. Improvements in efficency based on
fast nearest neighbor search such as exploiting grid structure of spatial domain, locally sen-
sitive hashing ([16]) are applicable in our methodology too. Using Gaussian kernels, with
a convergence delta, δ , set adequately to .01, merges would cease before 90th iteration, with
convergence around the 100th. When just pre-partitioning is the end objective, the merging
scheme thus allows us to fine tune stopping criteria. Along with the first iteration shift vec-
tors, globally normalized local density values at each data point were stored for consequent
use too. In each iteration, ρ(uτ ) was then approximated by the density value at uτ ’s nearest
data point. We found perturbations to be generally useful, lending to mode detection robust-
ness and more salient partitioning. A cluster at convergence can be perturbed a fixed number
of times consecutively, with progressively damped magnitudes. u then, would not be brought

6For images, since color similarity alone is of consequence, dB was evaluated only over the L∗a∗b∗ space
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Image JMS AAAMS JMS Labels AAAMS Labels

Lady JMS - 523 Labels, AAAMS - 490 Labels

Soldier JMS - 617 Labels, AAAMS - 601 Labels

Bench JMS - 180 Labels, AAAMS - 165 Labels

Mandrill JMS - 752 Labels, AAAMS - 721 Labels
Figure 3: AAAMS preserves more details and affects more perceptually salient segmentations, at similar clustering
levels. We used a single parameter set, 〈σr

base
2 ,σs

base
2 , ε2

r , ε2
s
〉
=
〈
15,16,1,81

〉 with dB = 1, to show its adaptivity on varied
images. JMS segments were kept around the same, with eye on preserving detail; it still smooths over at places. Its
parameter values varied significantly from image to image - σr2 ∈ [49, 81] , σs2 ∈ [100, 289]. Minimum cluster size was 10.

out of contention in the next iteration - although the immediate trajectory point resulting
from the perturbation will not be included in Tu. The results presented in this paper though,
are with perturbations disabled.

For image data, comparisons (Figs. 3, 4, Table. 1 7) are shown with joint domain Mean
Shift implementation (JMS) from EDISON ([8]), over Berkely Segmentation Dataset ([24],
BSD300). BSD300 is meant for supervised algorithms - we simply clubbed the training and
test images together. For sake of completeness, prior art on unsupervised image segmen-
tation is also shown in Table. 1. All indicated parameter values for AAAMS and JMS are
squared. We did not search for the best performing parameter set for AAAMS, opting for a
single low valued set instead. AAAMS performed significantly better than JMS, with results
superior to other unsupervised image segmentation methods as well.

Our experiments indicated that low base bandwidths, 〈σ r
base, σ s

base

〉, performed generally
7Probabilistic Rand Index (PRI), Variation of Information (VoI), Global Consistency Error (GCE), Boundary Displacement Error

(BDE). The first three are clustering purity measures. PRI is a measure of the fraction of pairs of points whose labels are consistent
with a given labeling. VoI and BDE are relative distance metrics between two given segmentations, based on average conditional
entropy and boundary pixel difference, respectively. GCE measures the extent to which one labeling can be viewed as a refinement of
the other. Higher is better for PRI while lower is better for the other three. For BSD300, the values indicate how well a segmentation
corresponds to ones by human subjects. We noticed that coarser segmentatios tended to give better values. This, we suppose, was
because humans tend to utilize much more comprehensive cues, and incorporate object or more holistic level semantics in their
segmentations. It was noticed that PRI corresponded better to low level segment saliency than others.
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Image JMS AAAMS JMS Labels AAAMS Labels

Aeroplane JMS - 14 Labels, AAAMS - 11 Labels

ColorWheel JMS - 51 Labels, AAAMS - 48 Labels

Wasp JMS - 150 Labels, AAAMS - 111 Labels

Figure 4: More parsimonious segmentations were quite often not
achievable with JMS - some varied examples are shown above
(Images such as Lady in Fig.3 are a typical case too). Both meth-
ods were configured for reduced label usage. Minimum cluster
size was 10. JMS, at its limit, is breaking boundaries and under
segmenting. AAAMS with lesser labels, does not break bound-
aries, still maintains segment saliency.

Figure 5: Single domain clustering examples over color data
(top row, 11 clusters) and simulated gaussian mixtures (second
row) in 2D & 3D respectively. 1− sigma final trajectory-set
bandwidths have been overlaid at converged mode positions.

Data 〈#Dims,#Classes〉 PRI GCE VoI
Seeds 〈7D,3〉 .89 / .86 / .87 .17 / .20 / .19 0.85 / 0.98 / 0.93
Yeast 〈8D,10〉 .69 / .61 / .67 .44 / .39 / .47 3.03 / 3.10 / 3.22
Letters 〈16D,26〉 .87 / .86 / .83 .67 / .70 / .62 4.96 / 5.16 / 4.72

Table 2: Results on higher dimension real world datasets from
[1], with a single kernel. Indicated values are of AAAMS / MS
/ VariableMS ([16]) respectively, with best values in red.

well on a good range of images (Fig. 3). This was due to the presented approach being locally
adaptive and anisotropic. At similar clustering levels, AAAMS preserved more details and
affected more salient segmentations.

Single kernel AAAMS was tested on images and 2D, 3D gaussian mixtures at varied
scales - with nice results. AAAMS results in Figs. 1(a), 5 are with postprocessing disabled.
As indicated in Figs. 1(a), 5, reasonable local bandwidths arise, robustly identifying modes
and salient clusters, by adapting according to local structure.

Experiments were conducted with some higher dimension datasets from [1] as well. Ta-
ble. 2 shows initial results, along with comparisons with single domain standard Mean Shift
(MS), and [16]’s isotropic variable bandwidth implementation. Cluster count was kept the
same as class count. AAAMS post-processing was disabled. [16] first determines isotropic
point bandwidths using the kth nearest neighbor distance heuristic, and subsequently utlizes
them in single kernel mean shift iterations. Our experiments with it indicated a lack of clus-
tering control. The datasets were meant for supervised classification, with attributes/feature
components at different scales, and having uncorrelated and/or uninformative dimensions.
Without any pre-processing (normalizations, component analysis) decent results were at-
tained with a single kernel AAAMS. Note that [16] internally normalizes the data, while
AAAMS & MS results are without any normalizations.

Promising results, both qualitative and quantitative, are indicative of the efficacy of the
presented approach. We intend to experiment further, especially with different merging
schemes and on varied data spaces.

4 Conclusion

A generalized methodology for feature space partitioning and mode seeking was presented -
leveraging synergism of adaptive, anisotropic Mean Shift and guided agglomeration. Unsu-
pervised adaptation of full anisotropic bandwidths is useful and further enables Mean Shift
clustering. We are excited about its prospects on point-normal clouds and video streams.

Our experiments did indicate sparse data to be an issue. This is understandable, as it
encumbers cluster growth and bandwidth development, with AAAMS behaving like con-
ventional Mean Shift then. Future work would also focus on alleviating this issue.
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