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Abstract

In this work we address the problem of estimating the 3D human pose from a single
RGB image, which is a challenging problem since different 3D poses may have similar
2D projections. Following the success of regression forests for 3D pose estimation from
depth data or 2D pose estimation from RGB images, we extend regression forests to
infer missing depth data of image features and 3D pose simultaneously. Since we do
not observe depth for inference or training directly, we hypothesize the depth of the
features by sweeping with a plane through the 3D volume of potential joint locations.
The regression forests are then combined with a pictorial structure framework, which is
extended to 3D. The approach is evaluated on two challenging benchmarks where state-
of-the-art performance is achieved.

1 Introduction

Over decades estimating the human pose from still images has been an intensive research
topic [19]. In recent years, the majority of research has been focused on estimating the 2D
pose, e.g. [9, 15, 23, 26, 36, 37], since this is already very challenging. However, many
applications require the 3D pose. While some approaches estimate first the 2D pose and
then reconstruct the 3D pose from the 2D pose estimate [20], estimating the 3D pose directly
from the images is more practical since it directly solves the problem at hand. For this task,
discriminative approaches that learn a mapping from image features to 3D pose, e.g. [,
5, 18, 22, 25, 27], have been most successful. These methods perform a nearest-neighbor
search or regression without taking the skeletal structure of a human into account. This is
in contrast to state-of-the-art human pose estimation approaches that rely on discriminative
parts and combine them within a pictorial structure model [11, 12] that represents the human
skeleton. A prominent example of these approaches is [39].

In this paper we address the problem of estimating the 3D pose from still images. How-
ever, instead of learning a regression from image features to the full pose, we regress the
positions of the joints in 3D space and then infer the pose using a 3D pictorial structure
framework. For regression, we rely on regression forests that have been shown to efficiently
predict 2D pose from images [9] or 3D pose from depth data [29]. These approaches, how-
ever, cannot be directly applied since each local image or depth feature estimates the relative
positions of the joints from the feature location. While the relative position is well defined
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if feature and joint locations are given either in 2D or in 3D, it is not defined if the features
are sampled from 2D images without depth information and the joint locations need to be
predicted in a 3D world coordinate system. We therefore hypothesize the depth of the image
features using a depth sweep approach. To this end, we sweep with a plane through the 3D
volume of potential joint locations and use a regression forest to predict the relative 3D po-
sition of a joint given the hypothesized depth of the feature. The final pose estimate is then
obtained by a 3D pictorial model.

In our experiments, we show that our approach achieves state-of-the-art performance on
the Human3.6m benchmark [16] and the HumanEva-I dataset [30].

2 Related work

Decision forests. Recently, decision forests [8] and their modifications have been intensively
used for a large number of applications in computer vision including human pose estimation
[9, 14, 29, 34, 35]. The works most similar to our approach are [14, 29] that independently
estimate 3D human body joint locations from depth images and [9] that estimates 2D pose
from images by learning two layers of decision forests. These approaches were inspired by
Hough forests [13] and Implicit Shape Models applied for human pose estimation [21].

Pictorial structure models. Pictorial structure models were originally presented in the
seventies [12] and rapidly gained popularity in tasks of object detection and human pose es-
timation since 2005 when an efficient inference algorithm was introduced in [11]. Initially,
simple models for body part templates were used, however, later pictorial stucture mod-
els were combined with more advanced discriminative classifiers as SVM [17], AdaBoost
[3] and decision forests [9]. The efficient inference algorithm proposed in [11] represents
relative parts offsets by a single Gaussian distribution. In order to overcome these limita-
tions, mixtures of pictorial structure models [17] and mixtures of parts [38] were proposed.
Furthermore, the pictorial structure framework was adapted for 3D human pose estimation
from multiple views [2, 7]. In contrast to these approaches, we use the pictorial structure
framework to estimate 3D human pose from a single view.

3D pose from RGB images. There is a variety of approaches that learn a mapping
from the space of the image features to the space of 3D poses. In [1] features extracted
from a human silhouette are evaluated together with different regression techniques. An
approach based on fast Bayesian Mixture of Expert (fBME) combined with more advanced
image features was introduced in [6]. This was improved by a Twin Gaussian Process (TGP)
regression approach [5] that estimates relative human pose from features extracted from an
image (HOG or HMAX).

Recently, researchers proposed methods that estimate 2D body joint locations using state-
of-the-art 2D detectors and disambiguate the 3D poses that could produce such projections
in a second step. Recovering 3D pose from 2D pose estimates, however, requires very strong
prior knowledge on 3D poses. Over the recent years, researcher proposed a number of ways
to incorporate this information. For example, the authors of [4, 10] used the temporal infor-
mation in order to recover 3D poses, while in [32] a latent generative model was proposed
that treats parameters of 3D pose as latent variables.
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Figure 1: First, we estimate 3D joint location probabilities from a 2D image using the re-
gression forests described in the paper. The two left images depict the front and side view of
the inferred 3D pose (green) and compare it with the ground-truth (red). Second, we use a
3D pictorial structure framework in order to enforce kinematic constraints and improve the
3D pose estimates (right).

3 Method

Our approach consists of two parts as shown in Figure 1: first, we independently estimate
joint 3D location probabilities; second, we use the estimated probabilities together with the
pictorial structure framework in order to infer the full skeleton. For the first part, we propose
depth sweep regression forests which are regression forests [13, 29] that hypothesize the
missing depth information of image features are discussed in Section 5. For the second part,
we extend the mixture of PSMs [17] for 3D inference. Since depth sweep regression forests
belong to the family of random forests [8], we briefly describe a regression forest framework
as used in [13, 29] and introduce relevant notation first.

4 Regression forests

In the context of pose estimation [9, 29], a regression tree represents a mapping from the
space of image patches and patch locations P x Q to the space of probabilities over joint
locations X. For a given patch P from location y, which ends in leaf L of the tree, the
probability of the location x of a joint j is then given by

pi(x|Py) = p(JIL(Py))p;(d(x,y)|L(P)y)), (1)

where p(j|L) denotes the class probability of joint j stored at leaf L and p;(d|L) denotes the
probability of relative locations of the joint j. In case of 2D pose estimation from images
or 3D pose estimation from depth data or 3D point clouds, we have @ C RY, X ¢ R? and
d(x,y) =x-y.

For localizing a joint j, the probabilities of all trees of a forest are averaged and summed
over all patches sampled from locations y € Q:

o;x)= ¥ fﬁ (I (Py)pi(d(x,y) Lz (Py). @)
yeQ TeT

The functional ¢;(x) can be considered as a confidence measure of joint j being at location
x. The position can then estimated by X; = argmax,¢ » ¢;(x). Since this can be efficiently
implemented by a voting procedure combined with mean-shift, these forests are also called
Hough forests [13].
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k. — —

Figure 2: Illustration of a depth sweep regression forest for 3D pose estimation from a 2D
image. Left. Patches sampled from different depths project onto the image with different
scale. Middle. The projected patches traverse the tree evaluating splitting functions in the
intermediate nodes (black and red) until they reach a leaf node (blue). A leaf node contains
3D offsets that point to locations of a joint with associated weights. Right. Based on the
offsets, the patches sampled in the 3D volume cast 3D votes for several joint locations.

Each tree is trained with a set of patches sampled from a random subset of the training
images annotated with the joint positions. In [9], patches are augmented by a class label
where patches close to a joint are labeled by the joint and otherwise labeled as background.
Each training sample is therefore an element of P x Q x J~ x X, where J~ denotes the set
of joints augmented by a background class. For the trees only the relative joint locations
are used, i.e. a sample is defined by (P)y, j,d). The trees are trained recursively where a
parametrized splitting function is selected at each node that optimizes the classification or
regression performance. The training is continued until the maximum depth is reached or the
number of training samples is below a threshold. At the leaves, the probabilities p(j|L) and
p;j(d|L) are computed given the class labels j and relative joint locations d of the training
data arriving at the leaf L.

S Depth sweep regression forests

In order to predict 3D joint locations from 2D images, the approach briefly described in
Section 4 cannot be directly applied since Q C R? and X C R3. The relative location d of a
3D joint given the 2D location of a patch, and thus (2), are not defined. We therefore propose
to perform the inference in Q' C R? instead:

B =Y ﬁ (JILr (P.y)) pj (d(x,¥)ILr (PY)) )
yeq TeT

In this formulation d(x,y’) = x —y’ is well defined, but the regression trees have to learn
a mapping from P x Q' to X. This causes a problem since P x Q' is not observed neither
for training nor for testing, which is in contrast to other works that assume that depth is
observed at least during training [33]. However, assuming that the camera projection 7 is
known, which maps a point from ' to the image plane Q, we can rephrase the problem as
learning a mapping from P x Q x Z to X, where the appearance of a 2D patch P depends
on the 2D image location and the depth z. Since we do not observe depth for training or
testing, we hypothesize it by sweeping with a plane parallel to the image plane along the
z-axis through a 3D volume. The patch P corresponding to the 3D point y' is then the patch
centered at the projection 7(y’) € Q and the leaf it ends depends on 7' € Z:
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Px) =Y ﬁ (L7 (P.r(y").2)) pj (d(x.¥)|Lr (P.7(y'),2)) )
y'eQ! TeT

Since the appearance of patches changes for different depth values, the maximum of (4)
corresponds to a set of patches that are associated to the correct hypothesized depth values
and agree on the 3D joint location. The approach is illustrated in Figure 2. In the following,
we describe our modifications to regression forests [9, 29] in order to perform inference as
in (4).

5.1 Training samples

The training data consists of a set of 2D images with annotated 3D pose. For training the
trees, we need samples (Py,z,j,d) from P x Q x Z x J~ x X, where J~ denotes the set
of joints augmented by a background class and x € X" are the 3D joint positions. For each
sample y’, we obtain z and y = 7(y’) directly. For P we use the full training image repre-
sented by 13 feature channels [; similar to [13]: (1) a normalized gray scale image; (2-4)
Lab color space; (5-13) HOG-like features with 9 bins. The variation of a patch based on
y’ will be directly encoded by the splitting functions of the trees. For each joint j located at
(x,vj,z;), we sample positive samples in the 3D neighbourhood of j. To this end, we use
a 3D Gaussian with mean (x;,y;,z;) and variance 0.1 of the upper body size computed as
in [9]. The negative samples (j = —1) are sampled uniformly from the scene volume and
selected if the distance to a joint is larger than 0.2 of the upper body size. In addition, we
performed mining of hard negative samples [13], i.e., after sampling negatives uniformly and
training the first trees we select negative samples with a low background class probability.
This step, however, resulted only in a minor improvement and can be omitted. While for
positive samples d = (x;,y;,z;) —y', d = 0 for negative samples.

For each joint, we sample 100 positive samples per training image. The number of
negative samples per image is equivalent to all positive samples, i.e. 100|J].

5.2 Splitting functions

In contrast to 2D joint detection, we do not evaluate patches that correspond to different pixel
locations of the image but rather a set of patches that corresponds to a discrete set of points
inside a 3D volume. For this reason, we also need to take variations of the patches based on
the depth into account. Given an image P with extracted feature channels [; and a 3D point
y' = (x,y,z) projected to y = m(y’), we define the family of splitting functions by

_ uioviyy o w2
fe(P,y,Z)—R,kg,h% <y+ < o Z)) le%Z,”% (y+ ( i )) > T, (%)

9:(ul>V17W17h1au25v25W27h27kaT)a (6)

where Ry, (y) is the average value of the feature channel / inside a w x & rectangular area
centered at the point y. (u.,v.) defines the offset for each rectangle from y. Each splitting
function is therefore parametrized by the 10D vector 6 and depends on the image features,
the 2D location of the patch, and the depth value z.

Given a set of training samples (P)y,z,j,d), 8 trees are trained as in Section 4 with
maximum depth 20 and at least 20 samples per leaf.
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5.3 Leaf probabilities

At the leaves, we store the probabilities p (j|L7) and p; (d|Lz) based on the training samples
(Py,z,j,d) arriving at the leaf Ly of tree T. While p (j|L7) is computed based on the class
labels j, pj (d|Lr) is computed for each joint. As in [14], we cluster the relative displacement
vectors d at the leaves for each joint j and use for each cluster k a Gaussian with the cluster
centroid di” as mean to model the probability:

Ja—dir/|[

pj(d|Ly) o< Zexp — @)
k

ar,j

For each leaf and joint, we use 4 clusters. In contrast to [14], we learn the hyper-parameters
ar,j for each tree T independently.

5.4 Inference

In order to sweep through the volume efficiently, we discretize the 3D space. Without loss of
generalization, we assume that the center of the coordinate system is at the camera location
and that the z-axis is perpendicular to the image plane. We use a uniform grid with voxel size
h, i.e. for a given bounding volume [x,, x| X [y4,Vs] X [24, 2] the discretization is defined by

Ql = {Y:jk = (xtl+i'h7yll+j'hvztl +kh) : (lajvk) € N3;(xaayllaztl) S yg}k S (xhvyhvzh)}'

For inference, we estimate the joint probabilities only for points in Q/, i.e. X = Q'. The
impact of £ is evaluated in the experimental section. It is worth to mention that the bounding
volume is only needed for the discretization and does not need to be tight. We only assume
that the joints are located inside of the volume.

Instead of taking the maximum of (4) as an estimate of the joint locations, we use a
pictorial structure model as in [9] to infer the pose.

6 Pictorial Structure Models

Inferring 3D joint locations independently from 2D RGB images is prone to depth ambigu-
ities. Many of the ambiguities, however, can be resolved by using a kinematic body model
that provides information about constraints between joint locations. To this end, we use
the well known pictorial structure framework [11] that provides accurate results while keep-
ing the inference tractable. Similar to the work [9] for 2D pose estimation, we use a joint
representation: o
P11 9) = [T (07 x)) " TT vyl :y), ®)
= (i,j)EE
where X; are the 3D locations of all joints, / a given image, and ¥;; are the parameters for
the binary terms. In our case, y;; is modeled by 3D Gaussian distributions. In contrast to [9],
we have an additional scaling term . Since ¢J‘.13(x ;) is more spread in the 3D space than
in the 2D space, we increase the peakiness of the unary terms by & = 5. The impact of the
additional scaling term is evaluated in the experimental section.
Contrary to [2, 7], we use a straightforward 3D extension of the original PSM framework.
To this end, we perform a 3D distance transform in the discretized bounding volume and use
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Figure 3: Impact of number of PS models, cluster weights (9) and clustering 3D poses or 2D
poses. Average pose error is reported in mm.
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Figure 4: Impact of scaling parameter o (8). Average pose error is reported in mm.

dynamic programming to get the estimate X; = argmaxy v p(X|I,0). As proposed in [17],
we use a mixture of PS models to overcome the limitations of a single tree model. To this
end, we cluster the annotated poses in the training data.

Given a set of training poses M, we convert them to relative poses by subtracting the root
node of the skeleton. We cluster the relative poses by k-means and estimate for each cluster
k the parameters 9, of a PS model. Inference with £ PS models is then performed by:

X = X;{ where k= argmax{ (M| p(Xi|I, ﬁk)} and X, = argmax p(X|I, %). 9
k |M | Xex’
This means that inference is first performed for each PS model independently and the solu-
tion of the model with highest confidence is taken. We weight the confidence of each model
by the number of poses within each cluster, where |M| denotes the number of poses used
to train model k and |M| is the overall number of poses. The impact of the weighting is
evaluated in the experimental section.

7 Experiments

We evaluated our approach on the HumanEva-I [30] and Human3.6M [16] datasets. For
both datasets we used the same 3D skeleton model shown in Figure 1. It consists of 14
joints (right/left ankle, right/left knee, right/left hip, right/left wrist, right/left elbow, right/left
shoulder, neck, head top). In all experiments we assumed that the center (x.,y.,z.) of the
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bounding volume is given and define the volume generously by [x. — 1280, x, 4+ 1280] x [y, —
1280,y + 1280] x [z, — 1280, 7z, + 1280], where 1280 is twice the image width. While we
obtain the center from the annotations, modifications of the bounding volume like increasing
the size do not change the accuracy since it is only needed to define a volume for voxeliza-
tion. In our experiments we use two error measurements in order to compare with other
methods: While 3D error corresponds to mean average Euclidean distance of the estimated
joints to the ground truth, 3D pose error was introduced in [31] to compare with methods
that do not estimate a global rigid transformation, i.e. only relative pose. For 3D pose error,
the inferred pose and ground truth are aligned by a rigid transformation using least squares
before computing the 3D error.

HumanEva. We follow the protocol used in [31]. We evaluate our approach on the jog-
ging and walking sequences using the data from all three RGB cameras for training and from
the first camera for testing. The training sequences are used for training and the validation
sequences for evaluation. For each action, DS regression forests and PS models are trained
separately on the training images from all three RGB cameras. In order to train a forest,
we randomly split the training data in proportion % to train each tree and % to learn the
hyper-parameters.

Human3.6m. In contrast to the evaluation on the HumanEva-I dataset, we do not perform
separate evaluations for different actions. We used six subjects (S1, S5, S6, S7, S8 and S9)
for training and S11 for testing. In order to train a tree, we randomly selected four subjects
to train the trees and two subjects to learn the hyper-parameters. As far as the dataset is
redundant, we used only 1 out of 16 frames for training. It corresponds to approximately
three frames per second. In order to select images for training, we clustered the data as
in [28] using the distance max ||x1j —Xz||, where X and x;; are the relative poses, i.e. joint
positions subtracted by pelvis joint. We selected 374 poses per subject, i.e. we used 374 -4
images for training a tree and 374 - 2 for setting the hyper-parameters.

Learning hyper-parameters. To speed up the training, we optimize the parameters
of the forest independently of the PS model. Since there are too many depth ambiguities
without a PS model, we search for the hyper-parameters that minimize the 2D error measured
between ground truth 2D joint locations and projected 3D locations inferred by the forest.
As in [9], we use the fraction of joints with 2D error below 0.15 of the upper body size as
measure.

Mixture of PSMs. We first evaluated the impact of having several PS models on the
Human3.6m dataset. For this experiment, we evaluated our approach using only 1 out of 256
consecutive frames of the test sequences and used & = 30mm as discretization step. With a
single PS model, we obtain an average error of 164.92 mm. With an increasing number of PS
models the error decreases as shown in Figure 3. The error is further reduced by weighting
the PS models based on the cluster size (9). It is interesting to note that without weighting,
the performance saturates with 16 models. In contrast, the error is further reduced with
more models when they are weighted. Since we observe 2D images but estimate 3D pose,
we investigated the difference between clustering the poses in 3D space or in the projected
2D space. This changes only the clusters My, but not the learning of the PSM parameters.
The results show that the clustering of 3D poses gives better results. We also evaluated the
effect of different values of the parameter o (8). The results in Figure 4 show that the error
decreases by scaling the unaries with o > 1.

Discretization and sampling. For inference, we discretize the bounding volume as de-
scribed in Section 5.4. The parameter 4 is evaluated on the same subset of Human3.6m.
For the experiments, we used a mixture of 32 PSMs. The results in Figure 5 show that the
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Figure 5: Impact of the discretization step 7. We measured the runtime on Core i7-3770.
Average pose error is reported in mm, runtime in seconds per image.

error decreases with a finer quantization of the volume at the cost of higher computational
cost. We also evaluated the difference of sampling positive patches from 3D Gaussians or
2D Gaussians on a plane in the 3D volume as discussed in Section 5.1. The difference is
minor. On HumanEva-I (S1,A1,C1) the 3D pose error for 2D Gaussians is 44.4 mm and for
3D Gaussians 44.0 mm.

Comparisons. We compare with other methods on HumanEva I and Human3.6m. We
used 32 PSMs for both datasets. The 3D volume is discretized with & = 20mm. Table 1
compares our approach with other approaches. Since some approaches were evaluated us-
ing a relative error [5, 31, 32] and others use an absolute error [10, 24], we provide the
results using both evaluation measures. Our approach outperforms most other approaches
on the majority of subsets used for evaluation. Only [5], which estimates only relative pose,
achieves a lower mean error. However, the standard deviation of the error is higher for [5].
We suppose that our approach, which aims at estimating absolute pose, has a constant error
due to the discretization. Furthermore, the PS model allows more limb size variations, while
the skeleton is stronger constrained in [5] when the training data contains only few subjects.
Another reason could be the MoCap data that is not always well aligned in this dataset.
Poorly aligned data has a bigger impact on learning absolute pose since the alignment error
is partially removed when an approach is trained on relative poses.

We therefore compared to [5] on Human3.6m using the publicly available source code.
For our approach, we use 32 PSMs and a uniform grid with step 4 = 30mm. In comparison
to HumanEva-I, we use a sparser grid to speed up the computation since the dataset is larger.
We evaluated both methods on 1 out of 64 frames of the testing dataset. The 3D pose error
for TGP is 117.90 mm, while the error of our approach is 115.7 mm. Figure 6 compares
the results for the two methods more in detail and shows that the accuracy of both methods
is comparable. However, our approach estimates absolute pose, i.e. changes in the global
position and orientation are obtained while relative pose does not provide such information.

8 Conclusion

We have presented an approach for estimating absolute 3D pose from RGB images. To this
end, we extended regression forests that learn 2D-2D or 3D-3D mappings for estimating
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Walking (A1,C1) Jogging (A2,C1)
St | s2 [ s3 S1 S2 S3
3D pose error (mm)
DSRF || 44.0+£15.9 | 30.9£12.0 | 41.7£14.9 57.2£18.5 | 35.0£9.9 | 33.3+13.0
[32] 65.1+£17.4 | 48.6+£29.0 | 73.5£21.4 7424223 |46.6£24.7 | 322£17.5
[31] 99.61+42.6 | 108.3£42.3|127.44+24.0 || 109.2+£41.5 | 93.1+£41.1 | 115.8+40.6
[5] 38.2+£21.4| 32.84+23.1 | 40.24+23.2 42.0£129 |34.7£16.6 | 46.4+28.9
3D error (mm)

DSRF || 89.34+38.6 | 59.8+24.1 | 78.5+£39.0 || 131.14+1154 | 70.2+£34.5 | 63.5£38.2
[24] 75.1£35.6 | 99.84+32.6 | 93.84+19.3 79.2£264 |89.8£34.2| 99.4+35.1
[10] 89.3 108.7 113.5 - - -

Table 1: Comparison of our approach (DSRF) with state-of-the-art methods on HumanEva-I
dataset. For comparison, we use two measures. While 3D error is the error of estimated 3D
joint positions, 3D pose error is the 3D error up to a rigid transformation. Details are given
in the text. The average error and standard deviation are reported.

T I I
1k -~ DSRF |
—— TGP
>
g
5 05 .
Q
<
07\ | | | | | | | | | | \7
0 50 100 150 200 250 300 350 400 450 500 550

Threshold (mm)

Figure 6: Comparison of our approach with Twin Gaussian Process regression [5] on Hu-
man3.6m dataset. The plot shows the number of estimated poses with an error below a
certain threshold.

pose from relative feature locations to the 2D-3D case. The missing depth information in
the 2D images is hypothesized by sweeping with a plane parallel to the image through the
3D volume and modeling patch distortions based on the depth by the splitting functions in
the trees directly. The regression forests predict 3D confidence volumes of the joint posi-
tions, which are then used within a mixture of pictorial structure models extended to the 3D
case to infer the pose. On two challenging datasets, our approach achieves state-of-the-art
performance in terms of absolute and relative pose error.
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program (GA 1927/1-1).
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