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Abstract

In this paper, image matting is cast as a sparse coding problem wherein the sparse
codes directly give the estimate of the alpha matte. Hence, there is no need to use the
matting equation that restricts the estimate of α from a single pair of foreground (F) and
background (B) samples. A probabilistic segmentation provides a confidence value on
the pixel belonging to F or B, based on which a dictionary is formed for use in sparse
coding. This allows the estimate of α from more than just one pair of (F,B) samples.
Experimental results on a benchmark dataset show the proposed method performs close
to state-of-the-art methods.

1 Introduction
Matting is a useful tool for image and video editing where foreground objects need to be
extracted and pasted onto a different background. A pixel Ii in an image can be considered
to be a composite of a foreground pixel Fi and a background pixel Bi such that

Ii = αFi +(1−α)Bi, (1)

where α defines the opacity of the pixel and is a value in [0, 1], with 0 for background
pixels and 1 for foreground pixels. Determining α for every pixel, also called pulling an
alpha matte, is a highly ill-posed problem since it involves estimation of seven unknowns (3
color components for each of Fi and Bi and the α value) from three color components. The
problem is constrained by providing additional information such as a three-level segmented
image known as a trimap [4, 13, 14] or as scribbles [3, 10] specifying the definite foreground
(F), definite background (B) and unknown regions.

There are three main approaches for image matting: sampling [5, 6, 8, 13, 14], alpha
propagation [3, 7, 10, 15] and a combination of the two [4, 18]. In sampling-based ap-
proaches, a foreground-background sample pair is picked from few candidate samples taken
from F and B regions by optimizing an objective function. This (F,B) pair is then used to
estimate α at a pixel with color I by

αz =
(I−B)(F−B)

‖(F−B)‖2 , (2)
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where ‖·‖2 denotes the Euclidean distance. α-propagation based methods assume correla-
tion between the neighboring pixels under some image statistics and use their affinities to
propagate alpha values from known regions to unknown ones. The third category includes
methods in which the matting problem is cast as an optimization problem in which the color
sampling component forms the data term and the alpha propagation component forms the
smoothness term; solving for the alpha matte becomes an energy minimization task.

The method proposed in this paper is based on sampling. However, there is one important
difference between our method and other sampling-based approaches. As mentioned above,
sampling-based approaches choose the best (F,B) pair from candidate samples through op-
timization and use it in the matting equation to determine α . This implies that a single
(F,B) pair is used to determine α and the goodness of that pair depends on how well the
optimization is done. In the proposed method, α is not determined based on a single (F,B)
pair; instead, for a given unknown pixel, a bunch of F and B samples (which need not be in
pairs) are considered together and weighted so that the sum of the weights provides the α .
This allows the matting framework to determine α based on more relevant F and B samples
than with only one of each. Thus, the proposed method does not use the matting equation in
eq. (2) to estimate α .

The tool that enables the use of more than one F and B sample to directly estimate α

as a sum of the samples’ weights is sparse coding. The success of sparse coding in var-
ious computer vision tasks such as face recognition [20], super-resolution [21] and image
classification [22] can be attributed to the fact that images generally lie on low-dimensional
subspaces or manifolds from which representative samples could be picked, creating a sparse
representation based on an appropriate basis [19]. Here, a dictionary of color values of F and
B pixels is employed to determine the sparse codes for a pixel in an unknown region. The
sum of the sparse codes for F pixels directly provides the α . Initially, the pixels in the trimap
are classified into high-confidence and low-confidence based on probabilistic segmentation.
The size of the dictionary for high-confidence pixels is smaller than that for low-confidence
pixels. Pixels in the unknown region are then sparse coded with respect to the adaptive
dictionary as described in section 3.2.

The only other method that uses sparse coding for matting is called compressive matting
[23]. There are two important differences between their method and ours. First, they use a
fixed window from which the dictionary is formed. This severely restricts the possibility of
obtaining a very incoherent dictionary since images are generally smooth over a small neigh-
borhood. Second, they map the sparse codes to the α values using a ratio of the l2-norm of
the sparse codes of F pixels to the sum of l2-norms of sparse codes of F and B regions. In
our approach, the sum of the sparse codes for F directly give α . Finally, they do not present
quantitative results on test images from [1] which contains a standard benchmark dataset on
which state-of-the-art matting algorithms are evaluated. We show quantitative and qualita-
tive results on this dataset. Fig. 1(a) shows an input image with 2 windows depicting fine
hairy regions. Closed-form matting [10] oversmooths the matte leading to loss of fine detail
(fig. 1(b)), while weighted color and texture matting [13] in fig. 1(c) uses texture feature
in addition to color . Comprehensive sampling [14] (fig. 1(d)) utilizes a large sampling set
and the matting equation, but does not perform as well as the proposed method, shown in
fig. 1(e), which is visually closer to the ground truth given in fig. 1(f)).

The paper is organized as follows. We review related work and its shortcomings in sec. 2
followed by description of our approach in sec. 3. Experimental results are discussed in
sec. 4, and we conclude the paper in sec. 5.
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(a) (b) (c) (d) (e) (f)

Figure 1: Visual comparison of alpha matte generated by our proposed method using sparse
coding with other state-of-the-art methods. Top and bottom rows show zoomed in regions of
windows 1 and 2 respectively. (a) Input image, (b) Closed form [10], (c) Weighted color and
texture [13], (d) Comprehensive sampling [14], (e) Proposed method and (f) Ground truth.

2 Related Work

Sampling-based matting methods can be divided into parametric and non-parametric meth-
ods. Parametric methods [5, 16] describe the foreground and background samples as arising
from parametric low-order statistical models and estimate alpha based on the distance of the
unknown pixels to the known color distributions. They generate large fitting errors for tex-
tured regions where it is insufficient to model the higher-order statistics of color distribution.
It tends to produce weak mattes when the trimap is coarse, leading to unreliable correlations
between unknown pixels and F and B samples. Non-parametric methods [6, 8, 13, 14] col-
lect a subset of known F and B samples and estimate the alpha matte from the best (F,B) pair
found through an optimization process. Different sampling strategies and final pair-selection
criteria distinguish these methods. Samples are collected from spatially nearest boundary
pixels [18], by shooting rays from the unknown to the known pixels [6], by selecting all
the pixels on the known region boundaries [8], or by selecting a comprehensive set of sam-
ples from within the known regions through Gaussian mixture model (GMM) based cluster-
ing [14]. The final (F,B) pair, found through optimization of an objective function, controls
the quality of the final matte. Texture is used in addition to color as a feature for matting in
[13] to address the problem of overlap in color distributions of F and B. Such approaches
fail to produce a good matte when the F and B samples are nearby in the color space, or
when the collected sample set fails to correlate with the actual color at the unknown pixel.
Chen et al. [4] formulate the sampling-based alpha estimate in [18], smoothness Laplacian
along with locally linear embedding as a weighted graph and obtain a closed-form solution
for the matte. Zheng et al. [24] treat matting as a supervised learning problem and use sup-
port vector regression to learn the alpha-feature model from known samples. This method is
also affected by similar F and B colors since the learned feature model could be inaccurate.

α-propagation relies on the affinity between neighboring pixels to propagate the matte.
Levin et al. [10] used a color line model for a small neighborhood of pixels to propagate α

across unknown regions. The color line model assumption does not hold in highly textured
regions due to strong edges that block the propagation of alpha. KNN matting [3] considers
nonlocal principle to formulate the affinities among K nearest neighbors in a nonlocal neigh-
borhood. Similar strategies to construct the Laplacian are employed in [7, 15] to overcome
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the limitation of the color line assumption. However, the smoothness assumption is insuffi-
cient to deal with complex images as high correlation among similar F and B colors wrongly
propagates the matte. An extensive survey on image matting is available in [17].

3 Proposed method
As indicated earlier, the motivation of the proposed method is to determine α from a bunch
of F and B samples (as opposed to a single pair of (F,B) samples in the matting equation)
in a sparse coding framework so that the sparse codes directly provide the α values. The
unknown pixels are categorized into high-confidence and low-confidence to allow a smaller
dictionary size for the former and a larger one for the latter. This is done through proba-
bilistic segmentation of the image. Sparse coding of feature vector at each pixel using the
appropriate dictionary yields the α value.

3.1 Confidence measure of unknown pixels
The feature vector used for coding is the 6-D vector [R G B L a b ]T consisting of the con-
catenation of the two color spaces. Initially, a universal set of samples from known regions
is obtained. In order to reduce the sample space for the universal set, we cluster known F
and B pixels in a band of width 40 pixels around the trimap into superpixels using SLIC al-
gorithm [2]. The mean color of each superpixel represents the F and B samples that make up
the universal set. Fig. 2(a) shows an original image and fig. 2(b) shows the superpixels from
the foreground and background regions in blue and red, respectively. From the universal set,
samples are chosen to form separate dictionaries for high-confidence and low-confidence
regions.

We desire a confidence measure that indicates how well the colors of foreground and
background regions are separated in the neighborhood of the unknown pixel. If an unknown
pixel has high-confidence, then it implies that the F and B colors are well separated and con-
sequently, the size of the dictionary can be small since we can then ensure that the dictionary
will be formed from highly incoherent samples. Overlapping of F and B color distributions
is one of the problems that recent sampling based approaches like [14] try to address. Pixels
with low-confidence come from areas that have potentially complex and overlapping color
distributions requiring a larger dictionary so that the variability in the sample set can be
captured.

(a) (b) (c) (d) (e) (f)

Figure 2: Illustration of sampling strategy and foreground probability map. (a) Input image,
(b) superpixel samples, (c) foreground probability map, (d) zoomed low-confidence region,
(e) estimated alpha and (f) ground truth.

Since the feature used for coding is color and the complexity of a region for matting is
dependent on the overlap of foreground and background colors, we use probabilistic segmen-
tation as a cue to determine the confidence of a pixel. We adopt a non-parametric sampling-
based probability measure [9] to determine a probability map. The foreground probability
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map indicates the probability of a given pixel belonging to the foreground. The probability
that a pixel Ii belongs to the foreground is given by

p(Ii) =
p f (Ii)

p f (Ii)+ pb(Ii)
, (3)

where p f (Ii) is the foreground color probability value given by

p f (Ii) = exp

(
−∑

m
k=1 ‖c(Ii)− c( fk)‖2

m ·δ

)
, (4)

where c(·) is the RGB color value, m is the number of spatially close foreground sam-
ples (closest is measured in terms of Euclidean distance from unknown pixel to centroid of
a superpixel) and δ is a weighting constant. In our experiments, we fix m and δ as 10 and
0.1 respectively. A similar expression is applicable to pb(Ii). Eq. (3) provides a confidence
value on whether a pixel belongs to the foreground or background. In areas of complex
color distributions, the spatial distance of the unknown pixel to foreground and background
pixels are similar. It has been observed that in such cases, the confidence measure as given
by eq. (3) ranges from about 0.3 to 0.7. However, it is also observed that in regions with
thin hairy structures whose color is significantly different from the background, the con-
fidence measure also lies between 0.3 and 0.7. In order to avoid such regions where the
color distributions do not overlap, we consider a 7×7 neighborhood and classify the un-
known pixel as low-confidence if the number of pixels with p(Ii) in [0.3,0.7] is larger than
35 (fixed empirically). Fig. 2(c) shows the probability map with higher intensity denoting
higher probability for a pixel to belong to foreground. Fig. 2(d) is a zoomed in region of
a low-confidence region where there is an overlap in the foreground and background color
distributions. Fig. 3(a) shows an image marked with low-confidence regions. The green
windows are areas of complex color distributions. However, the yellow window at the top
shows hairy region with separable F and B colors. Fig. 3(b) shows the marked windows
separately. The zoomed regions of the probability map in fig. 3(c) show that even in the
hairy region, we can observe probabilities in [0.3,0.7] as shown in the thresholded mask in
fig. 3(d) . The additional neighborhood condition helps us to classify only the true complex
color areas as the low-confidence mask, as shown in fig. 3(e) in which 1 is assigned to every
low-confidence pixel and 0 to high-confidence pixels.

(a) (b) (c) (d) (e)
Figure 3: Defining low-confidence regions in complex areas. (a) Input image and (b) zoomed
patches, corresponding (c) probability map, (d) thresholded mask for pixels in [0.3,0.7] and
(e) low-confidence mask for each region.
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3.2 Sparse coding to generate α

The size of the dictionary for an unknown pixel depends on whether it is classified as low-
confidence or high-confidence. If the pixel is of high-confidence, i.e., the color distributions
of F and B are well separated for the probabilistic segmentation to give high value for p(Ii),
then the dictionary is formed from the 40 (chosen empirically) spatially closest F and B
samples. Note that the samples here are the mean colors of the closest superpixels. As
mentioned earlier, in such regions, the samples would be sufficiently incoherent for sparse
coding.

The low-confidence regions are potential areas of overlapping color distributions. In this
case the dictionary size is larger. Thus, for a given unknown pixel, one-third of the spatially
closest superpixels from the definite F and B regions constitute the dictionary. Fig. 4(a) and
fig. 4(b) show an input image and its corresponding trimap. The universal sample set of F
and B regions in blue and red respectively, is shown in fig. 4(c). For a given unknown pixel
of low-confidence shown in green in fig. 4(d), the final dictionary is a larger subset of the
universal sample set than that of high-confidence pixels.

(a) (b) (c) (d) (e)

Figure 4: Dictionary formation followed by sparse coding to generate the matte. Foreground
and background regions are shown in blue and red respectively. (a) Input image, (b) trimap,
(c) universal set, (d) final dictionary and (e) estimated alpha.

The 6-D color vector, which forms the feature vector for coding, is normalized to unit
length. Given the dictionary D for an unknown pixel i, its alpha matte is determined by
sparse coding as

β = argmin‖vi−Dβi‖2
2 s.t ‖βi‖1 ≤ 1 ; βi ≥ 0, (5)

where vi is the feature vector at i composed of (R,G,B,L,a,b). The sparse codes βi are
generated using a modified version of the Lasso algorithm [11]. The sparse coding procedure
is presented with an appropriate set of F and B samples and the sparse coefficients sum
up to less than or equal to 1. In order to avoid negative sparse coefficients, the second
constraint forces all coefficients to be positive. The sparse codes corresponding to atoms in
the dictionary that belong to foreground regions are added to form the α for the unknown
pixel i.e.

α = ∑
p∈F

β
(p). (6)

Hence, the sparse codes directly provide the value of α . Fig. 4(e) shows the alpha matte
extracted from the sparse codes using our approach on the input image in fig. 4(a). A good
quality matte is obtained even when the unknown region is well inside the foreground which
is a challenge for propagation-based methods.
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3.3 Pre and Post-processing
We use a pre-processing step to expand the known regions to unknown regions based on
certain chromatic and spatial thresholds. An unknown pixel Ii is considered as foreground
if, for a pixel I j ∈ F [14]

(D(Ii, I j)< Ethr)∧ (
∥∥Ii− I j

∥∥≤ (Cthr−D(Ii, I j)), (7)

where D(Ii, I j) is the Euclidean distance between pixel Ii and I j in the spatial domain and
Ethr and Cthr are empirically set to 15 and 4, respectively. A similar formulation is applied
to expand background regions.

The alpha matte obtained by sparse coding is further refined to obtain a smooth matte by
considering the correlation between neighboring pixels’ matte. We adopt the post-processing
approach adopted by [14] where a cost function consisting of the data term and a confidence
value together with a smoothness term consisting of the matting Laplacian [10] is minimized
with respect to α . The confidence value at a pixel i is

Os(i) = Osprec(i) ·Ocolrec(i), (8)

where Osprec(i) = e−|vi−v̂i| and it measures the confidence in reconstructing the input fea-
ture vector based on the sparse coefficients, Ocolrec(i) = e−‖Ii−(αiFi+(1−αi)Bi)‖2 measures the
chromatic distortion.

The cost function for smoothing is given by:

α = argmin α
T Lα +λ (α− α̂)T D(α− α̂)+ γ(α− α̂)T

Γ(α− α̂), (9)

where α̂ is the estimated sparse matte from eq. (5), L is the matting Laplacian [10], λ and γ

are weighting constants denoting the relative importance of the data and smoothness terms
in the function. D is a diagonal matrix with values 1 for known foreground and background
pixels and 0 for unknown, while the diagonal matrix Γ has 0 values for known pixels and
Os(confidence value) for unknown pixels. Fig. 2(e) shows the final alpha obtained on the low
confidence region after post-processing and closely approximates the ground truth shown in
fig. 2(f).

4 Experimental Results
The effectiveness of the proposed method is evaluated using the benchmark dataset [12] for
image matting. It consists of 35 images covering a wide range of transparency of pixels -
from opaque to fully transparent. 27 images form the training set with publicly available
ground truth. The remaining 8 images form the test set whose ground truth is hidden from
the public and is used for benchmark evaluation and ranking [1].

Table. 1 shows the contribution of each part of the proposed algorithm. The performance
is measured by the sum of absolute difference (SAD) averaged over the test images and the
three types of trimaps for each image - small, large and user. Universal set refers to the the
dictionary formed from the band of superpixels along the boundary of the unknown region.
The high SAD error observed indicates that simply increasing the sample set for sparse cod-
ing does not result in better estimates due to the presence of high color-correlated samples
to the unknown pixel that are far away. Final dictionary refers to the refined dictionary ob-
tained after taking into account the confidence of the pixels. There is an improvement over
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Table 1: Evaluation of effect of each step in our method using sum of absolute difference
(SAD) error averaged over all test images for three types of trimaps.

Trimap
Term Small Large User

Universal Set 23.5 19.3 19.8
Final dictionary 18.4 13.0 13.6
Laplacian refinement 10.8 9.4 6.6

the universal set because the spatial constraint controls the false correlated samples from en-
tering the sample set. Laplacian refinement is the post-processing step which maintains the
smoothness of the matte. This stage shows a marked improvement over the sparse coding
stage because in formulating the sparse code optimization, we do not consider the smooth-
ness constraint. The combined effect of all the terms produces the lowest error rates.

The test dataset contains the 8 most difficult subset of images from the dataset. Qual-
itative comparisons with the state-of-the-art methods on the elephant and plant images are
shown in Fig. 5. Additional results are presented in the supplementary material. The high
overlap of F and B colors make these images difficult for matting as shown in the zoomed
patches in fig. 5 (b). The bottom row in fig. 5 (c) depicts a background region being in-
terpreted as foreground due to the inaccurate learning model for SVR matting [24]. ITM
matting [7] wrongly propagates the background into the leaves as well as the tail of the ele-
phant in fig. 5 (e). Comprehensive sampling [14], which uses a larger sampling set is able to
differentiate the elephant tail but still classifies the leaves as mixed pixels in the bottom row
of fig. 5 (d). The smooth prior in LNSP matting [4] oversmooths the matte leading to a band
between the foreground leaves and the background in fig. 5 (f). Our method is able to reduce
the above said artifacts and extract out a visually superior matte in these areas as shown in
fig. 5 (g).

A quantitative evaluation by the alpha matting website [1] of the proposed method is
shown in Table 2. The proposed method gives promising results quantitatively as well, rank-
ing within the top 5 in both SAD and gradient error and 7th in MSE. Table. 2 shows the
relative ranking of the top 10 matting algorithms today using the SAD and MSE error mea-

Input Image Zoomed patches SVR matting Comprehensive ITM matting LNSP matting Proposed method

(a) (b) (c) (d) (e) (f) (g)

Figure 5: Qualitative comparison of proposed method on elephant and pineapple images
with top 4 methods at [1]. (a) Input image, (b) zoomed windows, (c) SVR matting [24], (d)
Comprehensive sampling [14], (e) Iterative transductive matting [7], (f) LNSP matting [4]
and (g) Proposed method. Zoomed in regions show the effectiveness of our method.
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Table 2: Ranks of different matting methods with respect to sum of absolute differences
(SAD), mean squared error (MSE) and gradient error measures on benchmark dataset evalu-
ated at [1] as on submission date (April 28, 2014).

SAD

Method
Avg.
small
rank

Avg.
large
rank

Avg.
user
rank

Overall
rank

LNSP matting 3.9 5.5 9.5 6.3
Iterative Transductive matting 9.1 6.8 7.3 7.7
Comprehensive Sampling 6.8 7.5 9.1 7.8
Comprehensive Weighted C&T 8.9 8.5 7.8 8.4
Proposed method 10.9 9.4 6.6 9
SVR matting 11 8.3 7.6 9
Weighted Color & Texture 8.1 10.9 9.8 9.6
CCM 11.9 9.3 8.5 9.9
Shared matting 10.4 12.8 9.4 10.8
Global sampling matting 9.8 14 12.6 12.1

MSE

Method
Avg.
small
rank

Avg.
large
rank

Avg.
user
rank

Overall
rank

LNSP matting 4 4.6 8.6 5.8
CCM 9.4 6.6 5.5 7.2
Comprehensive Sampling 7.1 7.6 8.6 7.8
SVR matting 11.3 7.4 7.6 8.8
Comprehensive Weighted C&T 8.8 9.3 8.5 8.8
Weighted Color & Texture 9.8 11.6 10.9 10.8
Proposed method 12.3 11.4 8.9 10.8
Global sampling matting 7.5 13.5 12.1 11
Iterative Transductive matting 12.8 10.3 11.9 11.6
Shared matting 11.9 14 11.3 12.4

Gradient error

Method
Avg.
small
rank

Avg.
large
rank

Avg.
user
rank

Overall
rank

LNSP matting 5.6 6 9.8 7.1
Comprehensive Sampling 7.6 6.8 7.9 7.4
CCM 11.1 8 7.9 9
SVR matting 10.8 9.5 6.8 9
Proposed method 10.9 8.3 9.4 9.5
Segmentation-based matting 12.3 8.1 8.6 9.7
Global sampling matting 10 10 9.3 9.8
Shared matting 10 10.3 9.5 9.9
Improved Color matting 11.4 10.3 8.8 10.1
Comprehensive Weighted C&T 11.6 13.5 10.9 12

sures. We achieve the best ranking among all the methods on the user trimap. The methods
that are ranked higher utilize the matting equation in estimating the matte, or use features
like texture in addition to color, while we show that our color based sparse coded alternative
can still achieve good results on the benchmark images.

Table 3: Quantitative comparison of our method on mean squared error (MSE) measure with
compressive matting [23].

Image
Compressive
matting [23]

Our method

GT01
Trimap 1 5.0×10−4 1.46×10−4

Trimap 2 8.1×10−4 2.18×10−4

GT18
Trimap 1 12.0×10−4 3.5×10−4

Trimap 2 15.0×10−4 4.3×10−4

Finally, we compare our results with the only other method that uses sparse coding in
their formulation [23]. As noted earlier, they do not provide results evaluated by [1] on the
test images. Instead they provide quantitative evaluation on 2 training images (GT01,GT18),
each on two trimaps, by giving the MSE that they obtained. We compared our results for the
same images in Table 3 where we show that we achieve a four-fold decrease in MSE error
on both the images.
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10 JOHNSON et al. : SPARSE CODED MATTING

5 Conclusion
In this paper, we have shown that by removing the restriction of a single F − B pair in
estimating the matte, we are able to approximate the matting problem towards sparse rep-
resentation. The special constraints that are enforced on the sparse coding algorithm works
well in pulling a high quality matte that was verified by experimental evaluations and ranks
amongst the current state-of-the-art. In the future, we plan to extend our approach to videos
as well.
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