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Abstract

This paper addresses the challenge of establishing a bridge betwgenahwelu-
tional neural networks and conventional object detection framewiorkaccurate and
efficient generic object detection. We introduce Dense Neural Patsros for DNPs,
which are dense local features derived from discriminatively traireg d¢onvolutional
neural networks. DNPs can be easily plugged into conventional detdidimeworks in
the same way as other dense local features(like HOG or LBP). Thetiedfieess of the
proposed approach is demonstrated with the Regionlets object deteeatioewiork. It
achieved 46.1% mean average precision on the PASCAL VOC 2007%tizaas 44.1%
on the PASCAL VOC 2010 dataset, which dramatically improves the origiegidRlets
approach without DNPs. It is the first approach efficiently applyingdemvolutional
features for conventional object detection models.

1 Introduction

Detecting generic objects in high-resolution images isajrtee most valuable pattern recog-
nition tasks, useful for large-scale image labeling, saamerstanding, action recognition,
self-driving vehicles and robotics. At the same time, aataidetection is a highly challeng-
ing task due to cluttered backgrounds, occlusions, andpetise changes. Predominant
approachesy] use deformable template matching with hand-designedifesat However,
these methods are not flexible when dealing with variablectsptios. Wangt al. recently
proposed a radically different approach, narRegionlets, for generic object detectior2§].

It extends classic cascaded boosting classifi@d With a two-layer feature extraction hi-
erarchy , and is dedicatedly designed for region based bbgtection. Despite the suc-
cess of these sophisticated detection methods, the featamployed in these frameworks
are still traditional features based on low-level cues saghhistogram of oriented gradi-
ents(HOG) B], local binary patterns(LBP)1] or covariance 19] built on image gradients.
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Figure 1: Deep Neural Patterns (DNP) for object detection

With the success in large scale image classificatidi, [object detection using a deep
convolutional neural network also shows promising perfomoe [, 18]. The dramatic im-
provements from the application of deep neural networkdealieved to be attributable to
their capability to learn hierarchically more complex feas from large data-sets. Despite
their excellent performance, the application of deep CNakstheen centered around image
classification, which is computationally expensive whemsferred to perform object de-
tection. For example, the approach i} fequires around 2 minutes to evaluate one image.
Furthermore, their formulation does not take advantagesokrable and successful object
detection frameworks such as DPMHegionlets which are powerful designs for modeling
object deformation, sub-categories and multiple aspeictsta

These observations motivate us to propose an approachdieetfy incorporate a deep
neural network into conventional object detection framewo To that end, we introduce
the Dense Neural Pattern (DNP), a local feature densely extracted from an image with a
arbitrary resolution using a deep convolutional neuralvoek trained with image classifi-
cation datasets. The DNPs not only encode high-level feati@arned from a large image
data-set, but are also local and flexible like other densal fieatures (like HOG or LBP).
It is easy to integrate DNPs into the conventional detedtiameworks. More specifically,
the receptive field location of a neuron in a deep CNN can bk-backed to exact coordi-
nates in the image. This implies that spatial informatiomedfiral activations is preserved.
Activations from the same receptive field but different éeatmaps can be concatenated to
form a feature vector for that receptive field. These featemors can be extracted from any
convolutional layers before the fully connected layerscdese spatial locations of receptive
fields are mixed in fully connected layers, neuron activatifvom fully connected layers do
not encode spatial information. The convolutional layeasirally produce multiple feature
vectors that are evenly distributed in the evaluated image €a 224x 224 crop for exam-
ple). To obtain dense features for the whole image which neagidpnificantly larger than
the network input, we resort to “network-convolution” whishifts the crop location and
forward-propagate the neural network until features atledired locations in the image are
extracted. As the result, for a typical PASCAL VOC image, wdyaeed to run the neural
network several times to produce DNPs for the whole imagewi@ipg on the required fea-
ture stride, promising low computational cost for featurgaction. To adapt our features for
the Regionlets framework, we build normalized histograms of DNPs insidehesub-region
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of arbitrary resolution within the detection window and d@bdse histograms to the feature
pool for the boosting learning process. DNPs can also béyeamnbined with traditional
features in th&Regionlets framework as explained in Seg.3.

2 Review of Related Wor k

Generic object detection has been improved over years,albetter deformation model-
ing, more effective multi-viewpoints handling and occrshandling. Complete survey of
the object detection literature is certainly beyond thepscof this paper. Representative
works include but not limited to Histogram of Oriented Gextts B], Deformable Part-
based Model and its extensiori,[Regionlets [23], etc. This paper aims at incorporating
discriminative power of a learned deep CNN into these sfgksbject detection frame-
works. The execution of the idea is basedRagionlets object detection framework which is
currently the state-of-the-art detection approach withusing a deep neural network. More
details abouRegionlets are introduced in Se8.3.

Recently, deep learning with CNN has achieved appealingjteesn image classifica-
tion [11]. This impressive result is built on prior work on featurareing B, 14]. The
availability of large datasets like ImageNef and high computational power with GPUs
has empowered CNNs to learn deep discriminative featurgsarallel work of deep learn-
ing [12] without using convolution also produced very strong ressah the ImageNet clas-
sification task. In our approach, we choose the deep CNNtanthie due to its unique
advantages related to an object detection task as discirs&=t.3.1. The most related
work to ours is f] which converts the problem of object detection into regi@sed image
classification using a deep convolutional neural networkir &pproach differs in two as-
pects: 1) We provide a framework to leverage both the disndtive power of a deep CNN
and recently developed effective detection models. 2) Oethod is 74x faster tharv].
There have been earlier work in applying deep learning tedaljetection I5]. Among
these, most related to ours is the application of unsupenivisulti-stage feature learning for
object detection7]. In contrast to their focus on unsupervised pre-trainmg, work takes
advantage of a large-scale supervised image classificatolel to improve object detection
frameworks. The deep CNN is trained using image labels omagé classification task.

3 Dense Neural Patternsfor Object Detection

In this section, we first introduce the neural network useéxtwact dense neural patterns,
Then we provide detailed description of our dense featun@etion approach. Finally, we
illustrate the techniques to integrate DNP with Eegjionlets object detection framework.

3.1 TheDeep Convolutional Neural Network for Dense Neur al
Patterns

Deep neural networks offer a class of hierarchical modeleaon features directly from
image pixels. Among these models, deep convolutional hewtavorks (CNN) are con-
structed assuming locality of spatial dependencies arttbiséaity of statistics in natural
images [L1, 13, 16]. The architecture of CNNs gives rise to several unique @rigs de-
sirable for object detection. Firstly, each neuron in a déBiN corresponds to a receptive
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field [9] whose projected location in the image can be uniquely iledt Thus, the deeper
convolutional layers implicitly capture spatial inforraat, which is essential for modeling
object part configurations. Secondly, the feature extwadth a deep CNN is performed in
a homogeneous way for receptive fields at different locatidue to convolutional weight-
tying. More specifically, different receptive fields withetsame visual appearance produce
the same activations. This is similar to a HOG feature etdragvhich produces the same
histograms for image patches with the same appearancer. &thétectures such as local re-
ceptive field networks with untied weights (Le et al., 2012judly-connected networksdo
not have these properties. Not only are these propertigsfeala one-layer CNN, they are
also valid for a deep CNN with many stacked layers and all dsfans of its feature maps
By virtue of these desirable properties, we employ the deepl @rchitecture. We build a
CNN with five convolutional layers inter-weaved with maxetiog and contrast normaliza-
tion layers as illustrated in Figure 2. In contrast wit]j we did not separate the network
into two columns, and our network has a slightly larger nunddgparameters. The deep
CNN is trained on large-scale image classification with diaden ILSVRC 2010. To train
the neural network, we adopt stochastic gradient descehtmomentum 4] as the opti-
mization technique, combined with early stoppis}j [To regularize the model, we found it
useful to apply data augmentation and the dropout techn[@Jé1]. Although the neural
network we trained has fully connected layers, we extracPBNnly from convolutional
layers since they preserve spatial information from theitimmage.
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Figure 2: Architecture of the deep convolutional neuralvoek for extracting dense neural
patterns.

3.2 Dense Neural Patterns

After the deep CNN training on large-scale image classificathe recognition module is
employed to produce dense feature maps on high-resoluétattibon images. We call the
combination of this technique and the resulting featurdsetse Neural Patterns (DNPs).
The main idea for extracting dense neural pattern is ikistt in Figure3 and Figures.
In the following paragraphs, we first describe the methagieloto extract features using a
deep CNN on a single image patch. Then, we describe the gaemigtvolved in applying
“network-convolution” to generate dense neural patterns for the entire hightréso image.
Each sub-slice of a deep CNN for visual recognition is comisnoomposed of a convo-
lutional weight layer, a possible pooling layer, and a gasstontrast-normalization layet(].

INeural networks in which every neurons in the next layer amnected with every neuron on the previous
layer

2To see this in an intuitive sense, one could applynetwork-convolution”, and abstract the stack of locally
connected layers as one layer
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All three layers could be implemented by convolutional @piens. Therefore, seen from the
perspective of preserving the spatial feature locatidrescbmbination of these layers could
be perceived as one convolutional layer with one abstrdaeael. The spatial location of
the output can be traced back by the center point of the cotiwalkernel.
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(a) Input image path (b) Feature maps (c) Feature vector with location

Figure 3: Neural patterns extraction with location asdomia (a) A square region (224
224) as the input for the deep neural network. (b) Featuresrgaperated by filters in the
fifth convolution layer, spatially organized according beit inherited 2-D locations. Each
map has 1% 13 neural patterns. (c) Feature vector generated for eathréepoint. A
bigger circle indicates a larger neural activation.

As shown in Figuré(b), each convolution kernel produces a sheet of neuradpeit To
tailor dense neural patterns into a flexible feature setlfggat detectors, we compute the 2-
D location of each neural pattern and map it back to coordgan the original image. As an
example, we show how to compute the location of the top-letiral pattern in Figurg(b).
The horizontal locatiom of this top-left neural pattern feature is computed with &ipn 1:

X =Xi—1+( >

-P)S-1 (1)

wherei > 1,x; = le‘l, X1 is the top-left location of the previous lay#Y, is the window

size of a convolutional or pooling layeR, is the padding of the current layes, 1 is the
actual pixel stride of two adjacent neural patterns outguhle previous layer which can be
computed with Equatio

S=S§5_1xs. 2

Heres is the current stride using neural patterns output by ptesdayers as “pixels”. Given
equationl and equatior?, the pixel locations of neural patterns in different layeas be
computed recursively going up the hierarchy. Table 1 shawsge of geometric parameters,
including original pixelx coordinates of the top-left neural pattern and the pix@esiat each
layer. Since convolutions are homogeneoug andy directions, they coordinates can be
computed in a similar manner. Coordinates of the remaingwyal patterns can be easily
computed by adding a multiple of the stride to the coordimatethe top-left feature point.
To obtain a feature vector for a specific spatial locafiary), we concatenate neural patterns
located afx,y) from all maps(neurons) as illustrated in Figd(e).

Now that a feature vector can be computed and localized edesgral patterns can be
obtained by hetwork-convolution”. This process is shown in Figu#e Producing dense
neural patterns to a high-resolution image could be trivjashifting the deep CNN model
with 224x224 input over the larger image. However, deeper convaiatioetworks are
usually geometrically constrained. For instance, theyiregextra padding to ensure the
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Table 1: Compute the actual locatienof the top-left neural pattern and the actual pixel
distanceS between two adjacent neural patterns output by layieased on our deep CNN
structure.

i Layer W s R S X

1 convl 11 4 1 4 6

2 pooll 3 2 0 8 10
3 conv2 5 1 2 8 10
4 pool2 3 2 0 16 18
5 conv3 3 1 1 16 18
6 conv4 3 1 1 16 18
7 convh 3 1 1 16 18
8 pool3 3 2 0 32 34

map sizes and borders work with strides and pooling of the lagier. Therefore, the acti-
vation of a neuron on the fifth convolutional layer may haverbealculated on zero padded
values. This creates the inhomogeneous problem amonglpadtarns, implying that the
same image patch may produce different activations. Aljhathis might cause tolerable
inaccuracies for image classification, the problem couldidtemental to object detectors,
which is evaluated by localization accuracy. To rectifystboncern, we only retain central
5 x 5 feature points of the feature map square.

The DNP feature representation has some desirable chastictewhich make it sub-
stantially different from and complementary to traditibfeatures used in object detection.
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Figure 4: Dense feature maps obtained by shifting the ¢leaon window and extract
neural patterns at center positions.

3.3 Regionletswith Local Histograms of Dense Neural Patterns

The Regionlets approach for object detection was recently proposed? 8. [ Compared
to classical detection methodologies, which apply a oljégsifier on dense sliding win-
dows [3, 5], the approach employs candidate bounding boxes from Bade®earch 20].

The Regionlets approach employs boosting classifier cascades as the wicldssifier.
The input to each weak classifier is a one-dimensional feditam an arbitrary regioR. The
flexibility of this framework emerges from max-pooling faegs from several sub-regions
inside the regiorR. These sub-regions are namejionlets. In the learning process, the
most discriminative features are selected by boosting frdarge feature pool. It naturally
learns deformation handling, one of the challenges in gerdsject detection. Th&e-
gionlets approach offers the powerful flexibility to handle diffetespect ratios of objects.
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(a) Input image (b) Densely extracted (c) Boosting regionlet classifiers (d) Detected object
feature maps cascades bounding box

Figure 5: Regionlets object detection framework. It learns cascaded boostiagsdiers to
detect objects of interest. The object searching spacdirsedeusing segmentation cues.

The algorithm is able to evaluate any rectangular boundag Bhis is because it removes
constraints that come with fixed grid-based feature extact

The dense neural patterns introduce@ ipencode high-level features from a deep CNN
at specific coordinates on the detection image. This males thperfect set of features for
the Regionlets framework. The basic feature construction unit in Regionlets detection
model,i.e. a regionlet, varies in scales and aspect ratios. At the siamee the deep neural
patterns from an image are extracted using a fixed stridehnlbids to evenly distributed
feature points in both horizontal and vertical directiofiBus a regionlet can cover multiple
feature points or no feature point. To obtain a fixed lengtduai representation for a re-
gionlet of arbitrary resolution, we build a local DNP histam, or average pooling of DNPs,
inside each regionlet. Denote DNPs in a regionlas{xi|i € (1,...N;)}, wherei indicates
the index of the feature point; is the total number of feature points in regiomeT® he final
feature forr is computed as:

X=5 _;xi. ©))

Each dimension of the deep neural patterns corresponds igicgtam bin and their val-
ues from different spatial locations are accumulated asidegionlet. The histograms are
normalized using L-0 norm. While most histogram featuresneeéi fixed spatial resolu-
tion for feature extraction, our definition allows for a loigtam over a region of arbitrary
shape and size. Followin@J], max-pooling is performed among regionlets to handlelloca
deformations.

To incorporate DNP into thRegionlets detector learning framework, in which the weak
learner is based on a 1-D feature, we uniformly sampleXNE x Regionlets configuration
space to construct the weak classifier pool. Each configurapecifies the spatial configu-
ration of Regionlets as well as the feature dimension@NP. Because the representation is
1-D, the generated feature pool can be easily augmented fthl of other features such as
HOG, LBP or Covariance.

Constructing DNP feature representations for other tetefdased detectors (similar as
HOG template) is fairly simple. Naturally we just need to catenate all DNPs in the
detection window. The features can also be directly appbeithe Deformable Part-based
Model by replacing the HOG features with the 256 dimensioealral patterns.
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Table 2: Detection results using traditional feature ané@MNeural Patterns on PASCAL
VOC 2007. The combination of traditional features and DNBwshsignificant improve-
ment.

Features Mean AP
DNP Layer 1 24.9
DNP Layer 2 335
LBP 335
Covariance 33.7
DNP Layer 3 34.5
HOG 35.1
DNP Layer 4 38.9
DNP Layer 5 40.2
HOG, LBP, Covariance 41.7

HOG, LBP, Covariance, DNP Layer 5 46.1

Table 3: Performance comparison between two feature catibinstrategies: 1) Combina-
tion of neural patterns from the fifth layer and neural pattdrom a shallow layer(second
layer). 2) Combination of neural patterns from the fifth lagad hand-crafted low-level
features.

Features Mean AP
DNP Layer 5 40.2%
DNP Layer 5 + Layer 2 40.4%

DNP Layer 5 + HOG, LBP, Covariance 46.1%

4 Experiments

To validate our method, we conduct experiments on the PASEGIC 2007 and VOC
2010 object detection benchmark datasets. PASCAL VOC distasntain 20 categories of
objects. The performance is measured by mean averageipne@isAP) over all classes. In
the following paragraphs, we describe the experimentaligetesults and analysis.

We train a deep neural network with five convolutional layamd three fully connected
layers on 1.2 million images in ILSVRC 2010. All input imagae center-cropped and
resized to 256 256 pixels. We augment the data with image distortions baséhnslations
and PCA on color channels. The deep CNN reached 59% top lesgcan the ILSVRC
2010 test set. While our aim is to demonstrate the effects&®n&DNPs in object detection,
a deep CNN with better performance is likely to further imgrohe detection accuracy.

The originalRegionlets[23] approach utilizes three different features, HOG, LBP amd ¢
variance. In our experiments, we add to the feature pool Ddiufes from different layers.
During cascade training, 100 million candidate weak cfassi are generated from which
we sample 20K weak classifiers. On each test image, we forpopeal object hypothesis
as 0] and pass them along the cascaded classifiers to obtain &tedttbn result.

4.1 Detection Performance

We firstly evaluate how the deep neural patterns alone parfaith the Regionlets frame-
work, followed with evaluation of the combination of DNP ar®DG, LBP, Covariance
features. Finally, we compare our method with other stétifv@-art approaches.

Table2 summarizes the performance(sorted in ascending orderaditibnal features,
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DNP and their combinations on PASCAL VOC 2007. It is interesthat DNPs from the
second layer and third layer have comparable performaritetiaé well engineered features
such as HOG, LBP and Covariance features. DNPs from the &ftbrloutperforms any
single features, and are comparable to the combination tfi@lother three features. The
most exciting fact is that DNPs and hand-designed featuegisighly complementary. Their
combination boosts the mean average precision to 46.1%eidatming the original Regi-
nolets approach by 4.4%. Note that we did not apply any fingguof the neural network
on the PASCAL dataset.

The combination of DNPs and hand-crafted low-level featsignificantly improves the
detection performance. To determine whether the samegyan be obtained by combin-
ing low-level and high-level DNPs, we combine the DNPs frdwa fifth convolutional layer
and the second convolutional layer. The performance is shiovwrable3. However, the
combination only performs slightly better (0.2%) than gsthe fifth layer only. This may
be because the fifth layer features are learned from the I@wvel which makes these two
layer features less complementary.

Table 4: Detection results(mean AP%) on PASCAL VOC 2007 a®€\2010 datasets.

VOC 2007 | VOC2010
DPM [5] 33.7 29.6
SS_SPM 20| 33.8 34.1
Objectness]] 27.4 N/A
BOW [21] 32.1 N/A
Regionlets 23] 41.7 39.7
R-CNN pook [7] 40.1 N/A
R-CNN FT fc; [7] 48.0 435
DNP+Regionlets 46.1 441

Table 5: Speed comparison with directly extracting CNNuJezs for object candidates]].
R-CNN pools  Ours

Resize object candidate regions Yes No
Number of model convolutions ~ 2213 ~ 30
Feature extraction time per image 121.49s 1.64s

Table4 shows detection performance comparison with other deteatiethods on PAS-
CAL VOC 2007 and VOC 2010 datasets. We achieved 46.1% and&mean average
precision on these two datasets which are comparable wiiktter than the current state of
the art by [/]. Here we compare to results with two different settings/in features from the
fifth convolutional layer after pooling, features from treventh fully connected layer with
fine-tuning on the PASCAL datasets. The first setting is sintib us except that features
are pooled. Our results are better(46.1% vs 40.1% on VOC)28@an [/] on both datasets
in this setting. The approach iii][requires resizing a candidate region and apply the dee
CNN thousands of times to extract features from all candidagions in an image. The
complexity of our method is independent of the number of aatd regions which makes it
orders of magnitude faster. Tableshows the comparison with]in terms of speed using
the first setting. The experiment is performed by calculating the average sioress pro-
cessing all images in the PASCAL VOC 2007 dataset. DNPs etidratakes 1.64 seconds

3The time cost of the second setting ifj [s higher because of the computation in fully connecteddaye
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per image while 7] requires 2 minutes.

4.2 Visual Analysis

We devise a visualization techniques for the most imporfieatures used by the detector.
The learning process for boosting selects discriminatieakiwclassifiers. The importance
of a feature dimension roughly corresponds to how freqyénit selected during training.
We count the occurrence of each dimension of the DNPs in thévieak classifier set and
determine the most frequent dimension. We retrieve imagesdirom the dataset which give
the highest responses to the corresponding neurons in gpe@NdN.

Figure 6 shows the visualization. The left column describes the atbjategory we
want to detect. Right columns show visual patches which gigé responses to the most
frequently selected neural pattern dimension for the cayegThey are obviously quite
correlated. It indicates that the selected neural pattent®de part-level or object-level
visual features highly correlated with the object category
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Figure 6: Visualization of the high-level information emleal by neural patterns from the
fifth convolutional layer.

5 Conclusion

In this paper, we present a novel framework to incorporateserichinatively trained deep

convolutional neural network into generic object detattitt is a fast effective way to en-
hance existing conventional detection approaches withdher of a deep CNN. Instantiated
with Regionlets detection framework, we demonstrated the effectiveneisegfroposed ap-

proach on public benchmarks. We achieved comparable peaftze to state-of-the-art with
74 times faster speed on PASCAL VOC datasets. We also shavthhdNPs are com-

plementary to traditional features used in object detactitheir combination significantly

boosts the performance of each individual feature.
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