
W. Y. ZOU, X. WANG, M. SUN, Y. LIN: DENSE NEURAL PATTERNS, REGIONLETS 1

Generic Object Detection with Dense Neural
Patterns and Regionlets

Will Y. Zou1

http://ai.stanford.edu/~wzou

Xiaoyu Wang2

http://www.xiaoyumu.com

Miao Sun3

http://vision.ece.missouri.edu/~miao

Yuanqing Lin2

http://www.linyq.com

1 Stanford University
Stanford, CA, 94305

2 NEC Laboratories America
Cupertino, CA, 95014

3 University of Missouri
Columbia, MO, 65201

Abstract

This paper addresses the challenge of establishing a bridge between deep convolu-
tional neural networks and conventional object detection frameworksfor accurate and
efficient generic object detection. We introduce Dense Neural Patterns, short for DNPs,
which are dense local features derived from discriminatively trained deep convolutional
neural networks. DNPs can be easily plugged into conventional detectionframeworks in
the same way as other dense local features(like HOG or LBP). The effectiveness of the
proposed approach is demonstrated with the Regionlets object detection framework. It
achieved 46.1% mean average precision on the PASCAL VOC 2007 dataset, and 44.1%
on the PASCAL VOC 2010 dataset, which dramatically improves the original Regionlets
approach without DNPs. It is the first approach efficiently applying deep convolutional
features for conventional object detection models.

1 Introduction

Detecting generic objects in high-resolution images is oneof the most valuable pattern recog-
nition tasks, useful for large-scale image labeling, sceneunderstanding, action recognition,
self-driving vehicles and robotics. At the same time, accurate detection is a highly challeng-
ing task due to cluttered backgrounds, occlusions, and perspective changes. Predominant
approaches [5] use deformable template matching with hand-designed features. However,
these methods are not flexible when dealing with variable aspect ratios. Wanget al. recently
proposed a radically different approach, namedRegionlets, for generic object detection [23].
It extends classic cascaded boosting classifiers [22] with a two-layer feature extraction hi-
erarchy , and is dedicatedly designed for region based object detection. Despite the suc-
cess of these sophisticated detection methods, the features employed in these frameworks
are still traditional features based on low-level cues suchas histogram of oriented gradi-
ents(HOG) [3], local binary patterns(LBP) [1] or covariance [19] built on image gradients.
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Figure 1: Deep Neural Patterns (DNP) for object detection

With the success in large scale image classification [11], object detection using a deep
convolutional neural network also shows promising performance [7, 18]. The dramatic im-
provements from the application of deep neural networks arebelieved to be attributable to
their capability to learn hierarchically more complex features from large data-sets. Despite
their excellent performance, the application of deep CNNs has been centered around image
classification, which is computationally expensive when transferred to perform object de-
tection. For example, the approach in [7] requires around 2 minutes to evaluate one image.
Furthermore, their formulation does not take advantage of venerable and successful object
detection frameworks such as DPM orRegionlets which are powerful designs for modeling
object deformation, sub-categories and multiple aspect ratios.

These observations motivate us to propose an approach to efficiently incorporate a deep
neural network into conventional object detection frameworks. To that end, we introduce
the Dense Neural Pattern (DNP), a local feature densely extracted from an image with an
arbitrary resolution using a deep convolutional neural network trained with image classifi-
cation datasets. The DNPs not only encode high-level features learned from a large image
data-set, but are also local and flexible like other dense local features (like HOG or LBP).
It is easy to integrate DNPs into the conventional detectionframeworks. More specifically,
the receptive field location of a neuron in a deep CNN can be back-tracked to exact coordi-
nates in the image. This implies that spatial information ofneural activations is preserved.
Activations from the same receptive field but different feature maps can be concatenated to
form a feature vector for that receptive field. These featurevectors can be extracted from any
convolutional layers before the fully connected layers. Because spatial locations of receptive
fields are mixed in fully connected layers, neuron activations from fully connected layers do
not encode spatial information. The convolutional layers naturally produce multiple feature
vectors that are evenly distributed in the evaluated image crop ( a 224×224 crop for exam-
ple). To obtain dense features for the whole image which may be significantly larger than
the network input, we resort to “network-convolution” which shifts the crop location and
forward-propagate the neural network until features at alldesired locations in the image are
extracted. As the result, for a typical PASCAL VOC image, we only need to run the neural
network several times to produce DNPs for the whole image depending on the required fea-
ture stride, promising low computational cost for feature extraction. To adapt our features for
theRegionlets framework, we build normalized histograms of DNPs inside each sub-region
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of arbitrary resolution within the detection window and addthese histograms to the feature
pool for the boosting learning process. DNPs can also be easily combined with traditional
features in theRegionlets framework as explained in Sec.3.3.

2 Review of Related Work

Generic object detection has been improved over years, due to better deformation model-
ing, more effective multi-viewpoints handling and occlusion handling. Complete survey of
the object detection literature is certainly beyond the scope of this paper. Representative
works include but not limited to Histogram of Oriented Gradients [3], Deformable Part-
based Model and its extensions [5], Regionlets [23], etc. This paper aims at incorporating
discriminative power of a learned deep CNN into these successful object detection frame-
works. The execution of the idea is based onRegionlets object detection framework which is
currently the state-of-the-art detection approach without using a deep neural network. More
details aboutRegionlets are introduced in Sec.3.3.

Recently, deep learning with CNN has achieved appealing results on image classifica-
tion [11]. This impressive result is built on prior work on feature learning [8, 14]. The
availability of large datasets like ImageNet [4] and high computational power with GPUs
has empowered CNNs to learn deep discriminative features. Aparallel work of deep learn-
ing [12] without using convolution also produced very strong results on the ImageNet clas-
sification task. In our approach, we choose the deep CNN architecture due to its unique
advantages related to an object detection task as discussedin Sec.3.1. The most related
work to ours is [7] which converts the problem of object detection into region-based image
classification using a deep convolutional neural network. Our approach differs in two as-
pects: 1) We provide a framework to leverage both the discriminative power of a deep CNN
and recently developed effective detection models. 2) Our method is 74x faster than [7].
There have been earlier work in applying deep learning to object detection [15]. Among
these, most related to ours is the application of unsupervised multi-stage feature learning for
object detection [17]. In contrast to their focus on unsupervised pre-training,our work takes
advantage of a large-scale supervised image classificationmodel to improve object detection
frameworks. The deep CNN is trained using image labels on an image classification task.

3 Dense Neural Patterns for Object Detection

In this section, we first introduce the neural network used toextract dense neural patterns,
Then we provide detailed description of our dense feature extraction approach. Finally, we
illustrate the techniques to integrate DNP with theRegionlets object detection framework.

3.1 The Deep Convolutional Neural Network for Dense Neural
Patterns

Deep neural networks offer a class of hierarchical models tolearn features directly from
image pixels. Among these models, deep convolutional neural networks (CNN) are con-
structed assuming locality of spatial dependencies and stationarity of statistics in natural
images [11, 13, 16]. The architecture of CNNs gives rise to several unique properties de-
sirable for object detection. Firstly, each neuron in a deepCNN corresponds to a receptive
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field [9] whose projected location in the image can be uniquely identified. Thus, the deeper
convolutional layers implicitly capture spatial information, which is essential for modeling
object part configurations. Secondly, the feature extraction in a deep CNN is performed in
a homogeneous way for receptive fields at different locations due to convolutional weight-
tying. More specifically, different receptive fields with the same visual appearance produce
the same activations. This is similar to a HOG feature extractor, which produces the same
histograms for image patches with the same appearance. Other architectures such as local re-
ceptive field networks with untied weights (Le et al., 2012) or fully-connected networks1 do
not have these properties. Not only are these properties valid for a one-layer CNN, they are
also valid for a deep CNN with many stacked layers and all dimensions of its feature maps2.
By virtue of these desirable properties, we employ the deep CNN architecture. We build a
CNN with five convolutional layers inter-weaved with max-pooling and contrast normaliza-
tion layers as illustrated in Figure 2. In contrast with [11], we did not separate the network
into two columns, and our network has a slightly larger number of parameters. The deep
CNN is trained on large-scale image classification with datafrom ILSVRC 2010. To train
the neural network, we adopt stochastic gradient descent with momentum [14] as the opti-
mization technique, combined with early stopping [6]. To regularize the model, we found it
useful to apply data augmentation and the dropout technique[8, 11]. Although the neural
network we trained has fully connected layers, we extract DNPs only from convolutional
layers since they preserve spatial information from the input image.
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Figure 2: Architecture of the deep convolutional neural network for extracting dense neural
patterns.

3.2 Dense Neural Patterns

After the deep CNN training on large-scale image classification, the recognition module is
employed to produce dense feature maps on high-resolution detection images. We call the
combination of this technique and the resulting feature setDense Neural Patterns (DNPs).

The main idea for extracting dense neural pattern is illustrated in Figure3 and Figure4.
In the following paragraphs, we first describe the methodologies to extract features using a
deep CNN on a single image patch. Then, we describe the geometries involved in applying
“network-convolution” to generate dense neural patterns for the entire high-resolution image.

Each sub-slice of a deep CNN for visual recognition is commonly composed of a convo-
lutional weight layer, a possible pooling layer, and a possible contrast-normalization layer [10].

1Neural networks in which every neurons in the next layer are connected with every neuron on the previous
layer

2To see this in an intuitive sense, one could apply a “network-convolution”, and abstract the stack of locally
connected layers as one layer
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All three layers could be implemented by convolutional operations. Therefore, seen from the
perspective of preserving the spatial feature locations, the combination of these layers could
be perceived as one convolutional layer with one abstractedkernel. The spatial location of
the output can be traced back by the center point of the convolution kernel.
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Figure 3: Neural patterns extraction with location association. (a) A square region (224×
224) as the input for the deep neural network. (b) Feature maps generated by filters in the
fifth convolution layer, spatially organized according to their inherited 2-D locations. Each
map has 13× 13 neural patterns. (c) Feature vector generated for each feature point. A
bigger circle indicates a larger neural activation.

As shown in Figure3(b), each convolution kernel produces a sheet of neural patterns. To
tailor dense neural patterns into a flexible feature set for object detectors, we compute the 2-
D location of each neural pattern and map it back to coordinates on the original image. As an
example, we show how to compute the location of the top-left neural pattern in Figure3(b).
The horizontal locationx of this top-left neural pattern feature is computed with Equation1:

xi = xi−1+(
Wi −1

2
−Pi)Si−1 (1)

wherei > 1, x1 =
W1−1

2 , xi−1 is the top-left location of the previous layer,Wi is the window
size of a convolutional or pooling layer,Pi is the padding of the current layer,Si−1 is the
actual pixel stride of two adjacent neural patterns output by the previous layer which can be
computed with Equation2

Si = Si−1× si. (2)

Heresi is the current stride using neural patterns output by previous layers as “pixels”. Given
equation1 and equation2, the pixel locations of neural patterns in different layerscan be
computed recursively going up the hierarchy. Table 1 shows arange of geometric parameters,
including original pixelx coordinates of the top-left neural pattern and the pixel stride at each
layer. Since convolutions are homogeneous inx andy directions, they coordinates can be
computed in a similar manner. Coordinates of the remaining neural patterns can be easily
computed by adding a multiple of the stride to the coordinates of the top-left feature point.
To obtain a feature vector for a specific spatial location(x,y), we concatenate neural patterns
located at(x,y) from all maps(neurons) as illustrated in Figure3(c).

Now that a feature vector can be computed and localized, dense neural patterns can be
obtained by “network-convolution”. This process is shown in Figure4. Producing dense
neural patterns to a high-resolution image could be trivialby shifting the deep CNN model
with 224×224 input over the larger image. However, deeper convolutional networks are
usually geometrically constrained. For instance, they require extra padding to ensure the
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Table 1: Compute the actual locationxi of the top-left neural pattern and the actual pixel
distanceSi between two adjacent neural patterns output by layeri, based on our deep CNN
structure.

i Layer Wi si Pi Si xi

1 conv1 11 4 1 4 6
2 pool1 3 2 0 8 10
3 conv2 5 1 2 8 10
4 pool2 3 2 0 16 18
5 conv3 3 1 1 16 18
6 conv4 3 1 1 16 18
7 conv5 3 1 1 16 18
8 pool3 3 2 0 32 34

map sizes and borders work with strides and pooling of the next layer. Therefore, the acti-
vation of a neuron on the fifth convolutional layer may have been calculated on zero padded
values. This creates the inhomogeneous problem among neural patterns, implying that the
same image patch may produce different activations. Although this might cause tolerable
inaccuracies for image classification, the problem could bedetrimental to object detectors,
which is evaluated by localization accuracy. To rectify this concern, we only retain central
5×5 feature points of the feature map square.

The DNP feature representation has some desirable characteristics which make it sub-
stantially different from and complementary to traditional features used in object detection.

(a) Convolution with a stride 

of   × 16 pixels 

(b) Output the dense neural 

patterns 

Figure 4: Dense feature maps obtained by shifting the classification window and extract
neural patterns at center positions.

3.3 Regionlets with Local Histograms of Dense Neural Patterns

The Regionlets approach for object detection was recently proposed in [23]. Compared
to classical detection methodologies, which apply a objectclassifier on dense sliding win-
dows [3, 5], the approach employs candidate bounding boxes from Selective Search [20].

TheRegionlets approach employs boosting classifier cascades as the windowclassifier.
The input to each weak classifier is a one-dimensional feature from an arbitrary regionR. The
flexibility of this framework emerges from max-pooling features from several sub-regions
inside the regionR. These sub-regions are namedRegionlets. In the learning process, the
most discriminative features are selected by boosting froma large feature pool. It naturally
learns deformation handling, one of the challenges in generic object detection. TheRe-
gionlets approach offers the powerful flexibility to handle different aspect ratios of objects.
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Figure 5: Regionlets object detection framework. It learns cascaded boosting classifiers to
detect objects of interest. The object searching space is defined using segmentation cues.

The algorithm is able to evaluate any rectangular bounding box. This is because it removes
constraints that come with fixed grid-based feature extraction.

The dense neural patterns introduced in3.2encode high-level features from a deep CNN
at specific coordinates on the detection image. This makes them a perfect set of features for
the Regionlets framework. The basic feature construction unit in theRegionlets detection
model,i.e. a regionlet, varies in scales and aspect ratios. At the sametime, the deep neural
patterns from an image are extracted using a fixed stride which leads to evenly distributed
feature points in both horizontal and vertical directions.Thus a regionlet can cover multiple
feature points or no feature point. To obtain a fixed length visual representation for a re-
gionlet of arbitrary resolution, we build a local DNP histogram, or average pooling of DNPs,
inside each regionlet. Denote DNPs in a regionletr as{xi|i ∈ (1, . . .Nr)}, wherei indicates
the index of the feature point,Nr is the total number of feature points in regionletr. The final
feature forr is computed as:

x =
1
Nr

Nr

∑
i=1

xi. (3)

Each dimension of the deep neural patterns corresponds to a histogram bin and their val-
ues from different spatial locations are accumulated inside a regionlet. The histograms are
normalized using L-0 norm. While most histogram features define a fixed spatial resolu-
tion for feature extraction, our definition allows for a histogram over a region of arbitrary
shape and size. Following [23], max-pooling is performed among regionlets to handle local
deformations.

To incorporate DNP into theRegionlets detector learning framework, in which the weak
learner is based on a 1-D feature, we uniformly sample theDNP×Regionlets configuration
space to construct the weak classifier pool. Each configuration specifies the spatial configu-
ration ofRegionlets as well as the feature dimension ofDNP. Because the representation is
1-D, the generated feature pool can be easily augmented to the pool of other features such as
HOG, LBP or Covariance.

Constructing DNP feature representations for other template-based detectors (similar as
HOG template) is fairly simple. Naturally we just need to concatenate all DNPs in the
detection window. The features can also be directly appliedto the Deformable Part-based
Model by replacing the HOG features with the 256 dimensionalneural patterns.
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Table 2: Detection results using traditional feature and Deep Neural Patterns on PASCAL
VOC 2007. The combination of traditional features and DNP shows significant improve-
ment.

Features Mean AP
DNP Layer 1 24.9
DNP Layer 2 33.5
LBP 33.5
Covariance 33.7
DNP Layer 3 34.5
HOG 35.1
DNP Layer 4 38.9
DNP Layer 5 40.2
HOG, LBP, Covariance 41.7
HOG, LBP, Covariance, DNP Layer 5 46.1

Table 3: Performance comparison between two feature combination strategies: 1) Combina-
tion of neural patterns from the fifth layer and neural patterns from a shallow layer(second
layer). 2) Combination of neural patterns from the fifth layer and hand-crafted low-level
features.

Features Mean AP
DNP Layer 5 40.2%
DNP Layer 5 + Layer 2 40.4%
DNP Layer 5 + HOG, LBP, Covariance 46.1%

4 Experiments

To validate our method, we conduct experiments on the PASCALVOC 2007 and VOC
2010 object detection benchmark datasets. PASCAL VOC datasets contain 20 categories of
objects. The performance is measured by mean average precision (mAP) over all classes. In
the following paragraphs, we describe the experimental set-up, results and analysis.

We train a deep neural network with five convolutional layersand three fully connected
layers on 1.2 million images in ILSVRC 2010. All input imagesare center-cropped and
resized to 256×256 pixels. We augment the data with image distortions basedon translations
and PCA on color channels. The deep CNN reached 59% top 1 accuracy on the ILSVRC
2010 test set. While our aim is to demonstrate the effectiveness of DNPs in object detection,
a deep CNN with better performance is likely to further improve the detection accuracy.

The originalRegionlets [23] approach utilizes three different features, HOG, LBP and co-
variance. In our experiments, we add to the feature pool DNP features from different layers.
During cascade training, 100 million candidate weak classifiers are generated from which
we sample 20K weak classifiers. On each test image, we form proposed object hypothesis
as [20] and pass them along the cascaded classifiers to obtain final detection result.

4.1 Detection Performance

We firstly evaluate how the deep neural patterns alone perform with theRegionlets frame-
work, followed with evaluation of the combination of DNP andHOG, LBP, Covariance
features. Finally, we compare our method with other state-of-the-art approaches.

Table2 summarizes the performance(sorted in ascending order) of traditional features,
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DNP and their combinations on PASCAL VOC 2007. It is interesting that DNPs from the
second layer and third layer have comparable performance with the well engineered features
such as HOG, LBP and Covariance features. DNPs from the fifth layer outperforms any
single features, and are comparable to the combination of all the other three features. The
most exciting fact is that DNPs and hand-designed features are highly complementary. Their
combination boosts the mean average precision to 46.1%, outperforming the original Regi-
nolets approach by 4.4%. Note that we did not apply any fine-tuning of the neural network
on the PASCAL dataset.

The combination of DNPs and hand-crafted low-level features significantly improves the
detection performance. To determine whether the same synergy can be obtained by combin-
ing low-level and high-level DNPs, we combine the DNPs from the fifth convolutional layer
and the second convolutional layer. The performance is shown in Table3. However, the
combination only performs slightly better (0.2%) than using the fifth layer only. This may
be because the fifth layer features are learned from the lowerlevel which makes these two
layer features less complementary.

Table 4: Detection results(mean AP%) on PASCAL VOC 2007 and VOC 2010 datasets.

VOC 2007 VOC2010
DPM [5] 33.7 29.6
SS_SPM [20] 33.8 34.1
Objectness [2] 27.4 N/A
BOW [21] 32.1 N/A
Regionlets [23] 41.7 39.7
R-CNN pool5 [7] 40.1 N/A
R-CNN FT fc7 [7] 48.0 43.5
DNP+Regionlets 46.1 44.1

Table 5: Speed comparison with directly extracting CNN features for object candidates [7] .

R-CNN pool5 Ours
Resize object candidate regions Yes No
Number of model convolutions ∼ 2213 ∼ 30

Feature extraction time per image 121.49s 1.64s

Table4 shows detection performance comparison with other detection methods on PAS-
CAL VOC 2007 and VOC 2010 datasets. We achieved 46.1% and 44.1% mean average
precision on these two datasets which are comparable with orbetter than the current state of
the art by [7]. Here we compare to results with two different settings in [7]: features from the
fifth convolutional layer after pooling, features from the seventh fully connected layer with
fine-tuning on the PASCAL datasets. The first setting is similar to us except that features
are pooled. Our results are better(46.1% vs 40.1% on VOC 2007) than [7] on both datasets
in this setting. The approach in [7] requires resizing a candidate region and apply the deep
CNN thousands of times to extract features from all candidate regions in an image. The
complexity of our method is independent of the number of candidate regions which makes it
orders of magnitude faster. Table5 shows the comparison with [7] in terms of speed using
the first setting.3 The experiment is performed by calculating the average timeacross pro-
cessing all images in the PASCAL VOC 2007 dataset. DNPs extraction takes 1.64 seconds

3The time cost of the second setting in [7] is higher because of the computation in fully connected layer.
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per image while [7] requires 2 minutes.

4.2 Visual Analysis

We devise a visualization techniques for the most importantfeatures used by the detector.
The learning process for boosting selects discriminative weak classifiers. The importance
of a feature dimension roughly corresponds to how frequently it is selected during training.
We count the occurrence of each dimension of the DNPs in the final weak classifier set and
determine the most frequent dimension. We retrieve image crops from the dataset which give
the highest responses to the corresponding neurons in the deep CNN.

Figure 6 shows the visualization. The left column describes the object category we
want to detect. Right columns show visual patches which givehigh responses to the most
frequently selected neural pattern dimension for the category. They are obviously quite
correlated. It indicates that the selected neural patternsencode part-level or object-level
visual features highly correlated with the object category.

Bicycle 

Dog 

Person 

Train 

Pottedplant 

Figure 6: Visualization of the high-level information encoded by neural patterns from the
fifth convolutional layer.

5 Conclusion

In this paper, we present a novel framework to incorporate a discriminatively trained deep
convolutional neural network into generic object detection. It is a fast effective way to en-
hance existing conventional detection approaches with thepower of a deep CNN. Instantiated
with Regionlets detection framework, we demonstrated the effectiveness ofthe proposed ap-
proach on public benchmarks. We achieved comparable performance to state-of-the-art with
74 times faster speed on PASCAL VOC datasets. We also show that the DNPs are com-
plementary to traditional features used in object detection. Their combination significantly
boosts the performance of each individual feature.
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