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Abstract

Recent top performing methods for viewpoint estimation make use of 3D informa-
tion like 3D CAD models or 3D landmarks to build a 3D representation of the class.
These 3D annotations are expensive and not really available for many classes. In this
paper we investigate whether and how comparable performance can be obtained with-
out any 3D information. We consider viewpoint estimation as a 1-vs-all classification
problem on the previously detected object bounding box. In this framework we compare
several features and parameter configurations and show that the modern representations
based on Fisher encoding and convolutional neural network based features together with
a neighbor viewpoints suppression strategy on the training data lead to comparable or
even better performance than 3D methods.

1 Introduction
Estimating the pose of objects is a classical problem in vision. It aims at predicting a dis-
crete or continuous viewpoint. In conjunction with object detection, viewpoint estimation is
receiving increasing attention lately. Recent trends in the vision community suggest that, for
an accurate estimation of the object pose, 3D information about the object class is beneficial.
For instance, Pepik et al. [25] show that using 3D CAD models of the class of interest can
lead to a 3D representation of a deformable part model which, even though it has slightly
worse detection performance, obtains state-of-the-art results in terms of pose estimation.
Likewise, Hejrati and Ramanan [13] show that providing 3D landmarks of cars can lead to a
very accurate estimation of their 3D pose.

However, 3D information (either 3D CAD models or 3D landmarks) is expensive to
obtain and not available for many classes. In this paper, we show that a very simple 2D
architecture (in the sense that it does not make any assumption or reasoning about the 3D
information of the object) generally used for object classification, if properly adapted to the
specific task, can provide top performance also for pose estimation.

More specifically in this work, we demonstrate on several datasets how a 1-vs-all clas-
sification framework based on a Fisher Vector (FV) pyramid and with neighbor viewpoints
suppression (see sect. 3) can be used for pose estimation. Furthermore, we investigate the
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performance of our system substituting the FV representation by the features extracted from
a convolutional neural network (CNN) that recently has obtained very impressive results on
the object classification task [5, 16, 27]. Our results show that for the fine-grained task of
pose estimation both representations perform equally well and similarly or better than 3D
methods previously proposed and designed specifically for the problem of pose estimation.

The paper is organized as follows. In section 2 we relate our method with the current
literature in 2D/3D pose estimation. In section 3 we explain each component of our method
and how those components interact with each other. Finally experiments are presented in
section 4. Conclusions are drawn and future work is discussed in section 5.

2 Related Work
There are two lines of research for viewpoint estimation: one that uses 2D models for the
pose representation and the other that leverages on 3D information to tackle the problem.
Inspired by successes of deformable part models, several works have built 2D viewpoint-
dependent detectors. Typically, they explicitly handle viewpoints and discriminatively train
models where the number of components corresponds to the views of an object for joint
viewpoint classification and object detection. These models vary from rigid HOG tem-
plates [22] to deformable part models [12, 19, 36]. The drawback of such formulations
is that they typically require training and evaluating a large number of view-based detectors
which can be computationally quite demanding. Recently Redondo-Cabrera et al. [28] pro-
posed a Hough Forest based method for simultaneous object detection and continuous pose
estimation. However their detection performance is not as good as DPM-based methods.

Latest progresses on pose estimation have mostly utilized 3D CAD models [18, 24, 25,
31]. Pepik et al. [24] introduce a 3D extension of the deformable part model where part
appearances as well as spatial deformations are represented in 3D. Such formulation allows
synthesizing part appearance models for arbitrary viewpoints. Similarly, Zia et al. [37] first
obtain a rough localization and pose of the object by using an off-the-shelf method and then
a continuous pose is estimated by using annotated 3D CAD models. Arie-Nachimson and
Basri [1] and Glasner et al. [10] use pose estimation prior to construct a 3D point cloud
of object instances from training images. This limits their methods to datasets where such
reconstruction is possible. Hejrati and Ramanan [13] estimate car poses using an explicit
3D model of shape and viewpoint which is learned from structure-from-motion (SFM). The
drawback of such methods is that they require labeled landmark positions of training data
which is expensive to collect. Sun et al. [33] and Su et al. [32] build 3D pose models by
adopting the strategy of grouping local features into parts and learn part locations across
viewpoints using generative models. Finally, Fanelli et al. [7] showed the usefulness of
depth information for solving the problem of head pose estimation. They learn a mapping
between simple depth features to 3D nose coordinates and rotation angles and estimate head
pose through random forest based classifiers. In general, methods that rely on 3D models are
not easy to collect for certain object categories.

Recently great interest has been expressed in fisher kernel and convolutional neural net-
work representations which have shown outstanding performance on several vision tasks.
Simonyan et al. [30] showed that Fisher vectors on densely sampled SIFT features are
capable of achieving state-of-the-art face verification performance. Recently, Toshev and
Szegedy [34] propose a cascade of deep neural network regressors that aim to predict ar-
ticulated human body joints. Jain et al. [15] trained multiple convolutional neural nets to
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perform independent detection of parts. However, up to our knowledge, there is no work that
uses Fisher vector or convolutional neural network features in a simple 2D representation for
the task of viewpoint estimation.

3 Proposed Method
Our method takes as input a detection bounding box, extracts features and assigns to the
bounding box a pose. The estimation of the pose is done with a one-vs-all classifier of a
discrete set of viewpoints. In the rest of this section, we explain in detail each step of our
pipeline.

Detection. For detection, we use the de-facto standard detector based on deformable part
models (DPM) [8, 9]. For each image, we apply the detector at multiple scales and collect
detections which later are processed for estimating their poses. For both training and testing,
we train our model on the detected objects (i.e. we did not use ground-truth bounding-boxes
for training pose models) since we want the data to be generated from the same distribution.

Feature Extraction. In all FV-based experiments we extract dense SIFT descriptors [20]
from the output of the detector. Specifically, we extract features over 5 scales, with a scal-
ing factor of

√
2. 32× 32 pixels patches are sampled with step size of 5 pixels from every

detected bounding box. We call this basic feature representation sift. In addition, as pro-
posed by Carreira et al. [3], we also repeat the experiments with enriched SIFT descriptors
where the it is enriched with the location of the patch centre with respect to the upper-left
corner of the bounding box, normalized by its size. In this case, for each patch, the final
descriptor is a L1-normalised concatenation of the SIFT descriptor and the patch location
(sift+loc), resulting in a 130-dimensional descriptor.

Fisher Vector. FV [14] encodes information about the generative model that produces the
low-level features by computing the gradient of the feature samples with respect to the model
parameters. For computing the FV, we use the improved procedure proposed by Perronnin et
al. [26] where a Gaussian Mixture Model (GMM) is fitted to dimensionality reduced SIFT
features.

Specifically, after reducing the feature dimensions to 60 using PCA, we estimate λi =
{wi,µi,Σi, i = 1..K}, the parameters of the GMM, on a 100K sampled features set where
wi,µi,Σi are weight, mean, and diagonal covariance of the i-th mixture model respectively
and K is the number of mixtures. Afterwards we estimate first and second order gradient
statistics of each feature by computing its derivative w.r.t. the Gaussian means and variances.
Let GX

λi
be the weighted average of low-level features statistics with respect to component i,

GX
λi
=

1
T

N

∑
t=1

α
t
i ψ(xt ;λi),

ψ(xt ;λi) = [
1√
w
(

xt −µi

σi
),

1√
2w

(
(xt −µi)

2

σi2
−1)].

Then each image is represented by stacking GX
λi

for all mixtures: [GX
λ1
, ...,GX

λK
], where

X = {xt , t = 1..N} is the set of N low-level features extracted from the image and α t
i is
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the soft weight of the t-th feature for the i-th Gaussian. Following [26], we further nor-
malise Fisher vectors by signed square-rooting and then L2 normalisation. In our experi-
ments, we built K = 128 Gaussian mixtures which leads to an image representation of length
2Kd = 2×128×60 = 15360.

Spatial Information. It is known that in Fisher encoding, the spatial layout of the appear-
ance is completely ignored (except when using the sift+loc enriched features). Without
doubt, the spatial information may convey useful cues for pose estimation. In this paper,
we encode spatial information in two ways. First as a low-level strategy by augmenting
SIFT with location of the patch (as previously described) and second by building a Spatial
Pyramid [17] on top of the FV. In the experiments we use a spatial pyramid that divides the
bounding box into 4× 4, 2× 2 and 1× 1 cells and then stacks the FVs computed for each
cell separately. We call this configuration fisher+spm. As we will see in section 4.2, the
two spatial encodings are complementary.

Learning. We want to transform the discrete viewpoint estimation problem to classification.
To do so, we consider each viewpoint as a different class. Then, for each viewpoint we learn
a linear SVM based on a 1-vs-all strategy. In this scenario an important difference with a
standard multiclass problem is that nearby viewpoints are generally visually very correlated.
In this sense, it is not reasonable to assign to all negative poses equal importance. In the
experimental results we show that eliminating nearby poses from negative samples always
improve the viewpoint estimation. We call this procedure neighboring viewpoint suppres-
sion or briefly nv-suppression. For very coarse binning, since it might happen that too
much negative data is suppressed, whenever continuous pose is provided, we suppress neg-
ative data only up to 10 degrees apart from the positive samples. Note that this is similar to
the recently proposed one-vs-most technique of Berg et al. [2].

Convolutional Neural Networks. We also tested Deep Convolutional Activation Feature
(decaf) [5] on our framework to evaluate how good recently popular deep-learning ap-
proaches perform on viewpoint estimation. Decaf is based on the deep convolutional neural
network architecture proposed by Krizhevsky et al. [16], which won the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) 2012 [4]. In decaf the neurons activation
of the late hidden layers of a pre-trained network are used as strong features for generic vi-
sion tasks with impressive results [5]. We use the model pre-trained on ILSVRC since in
pose estimation there are too few training samples to properly learn a full deep represen-
tation from scratch. The final network contains five convolutional layers followed by three
fully-connected layers named by layer from 1 to 8. We refer to [16] for a detailed discus-
sion of the architecture. For pose training, we first extract the L2-normalized features from
the pooled output of layer 5 (last convolutional layer) and then use the same learning strat-
egy as explained above for fisher. In this case, the pose representation has 9216 feature
dimensions.

4 Experimental Evaluation
In this section we first describe the characteristics of the four datasets that we use and then on
these datasets we thoroughly evaluate and compare several state-of-the-arts methods based
on 2D and 3D information for estimating poses.
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4.1 Datasets

Faces. We train the detector on a subset of the CMU MultiPIE face dataset [11] and test
it on the Annotated face-in-the-wild [36] (AFW) dataset. The CMU MultiPIE face dataset
contains around 75000 images of 337 people over 13 viewpoints spanning over 180 degrees
discretized every 15 degrees, with different illumination conditions and expressions. As in
[36], in our experiments, we use 900 faces for training with 300 of those frontal and the rest
evenly distributed among other viewpoints. AFW test set contains 468 faces from 205 images
and 13 discretized viewpoints. Images contain cluttered backgrounds with large variations
in face appearance. The metric used for this dataset is the same as in [36] and reports the
fraction of faces for which the estimated pose is within some error tolerance (±15 and±30).
Notice that, to make the evaluation more realistic, missed detections are counted as errors in
pose estimation. In the following tables, we call this evaluation fraction of valid poses (FVP).

Cars. We also present results on EPFL Multi-view car dataset [22]. It contains 2299 images
of 20 different car models. Cars are rotated over 360 degrees and their continuous viewpoint
angle can be approximately calculated using the capture time of each image and the frontal
view capturing time information that is provided. Images are captured using a static camera
and all cars appear in the center of the image, without occlusions. Since a continuous pose is
provided for this dataset, in our evaluation we divide the viewpoints into 8, 16 and 36 discrete
bins. We follow the experimental setup of [22] and use the first 10 sequences for training
and next 10 sequences for testing. The evaluation metric that we use for this dataset is
Mean Precision of Pose Estimation (MPPE) [19] and Median Angular Error (MAE). MPPE
is computed as the average of the diagonal of the confusion matrix and MAE is the median
error, where the error is measures computed as min{|θ −θ ∗|,360− (|θ −θ ∗|)} with θ the
estimated viewpoint angle and θ ∗ the ground truth viewpoint.

General Objects. Finally, we evaluate our methods on two general objects datasets: PAS-
CAL3D+ [35] and a subset of the 3DObject dataset [29]. PASCAL3D+ augments 12 rigid
categories of the PASCAL VOC 2012 [6] with 3D annotations. For each category more im-
ages are added from ImageNet [4] and on average there are more than 3000 object instances
per category. Since [35] reported the baseline using the train subset of PASCAL VOC
2012 (detection challenge) for training and val subset for evaluation, we follow the same
protocol. For evaluation, we use the Average Viewpoint Precision (AVP). AVP takes into
account the detection performance in the evaluation of the pose estimation. In this way, an
output from the detector is considered to be correct if and only if the bounding box overlap
with the ground truth annotation is larger than 50% and the viewpoint is correct. As a result,
AP is an upper bound for AVP. Note that Pose Estimation Average Precision (PEAP) pro-
posed in [19] is different from AVP. PEAP[19] uses precision and recall of pose estimation
whereas, even if not formally specified in [35], AVP uses precision of pose estimation and
recall of detection.

Finally, the 3DObject dataset contains 10 everyday object classes such as iron, car and
stapler. Each category includes 10 instances observed from 8 different viewpoints. Because
other papers that use 3D information have published their results only on car and bicycle
categories, we evaluate on car and bicycle as well. We follow the testing protocols of [29]
and report results in terms of MPPE for this dataset.
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4.2 Experimental Evaluation
Detection. In all experiments the first part of our algorithm consists of detecting the object
of interest. For this we use standard DPM (voc-release5) [9] with 6 components. For
faces, we train DPM on 900 images of MultiPIE where the components are initialized based
on the face orientation. We evaluate on AFW obtaining an AP of 88.3% with a maximum
recall of 98.1%. Note that recently Mathias et al. [21] reported significantly better detection
performance on this dataset. For detection on EPFL cars, we use the PASCAL VOC 2007
pre-trained DPM car model (voc-release5) [9]. Its AP is 88.2% with a maximum recall
of 100% on test images. For PASCAL3D+ dataset, following [35], we train DPM (in this
case we use version voc-release4.01 to be compatible with the original results) on the
train subset of PASCAL VOC 2012 and evaluate on val. The AP is reported in table 6 for
each object category. For detection on Object3D cars and bicycles, we again use DPM car
and bicycle models pre-trained on PASCALVOC-2007 (voc-release5) [9]. Their APs
on test data are 88.9% and 79.2% respectively with maximum recall of 100% and 96.8%.

Pose Estimation. In table 1, we evaluate the performance of different features and encoding
on the EPFL car dataset using 8 view models, each covering 45 degrees and AFW using
the 13 views learned on MultiPIE. We evaluate the methods either with ground-truth
bounding boxes or with the bounding boxes obtained from a detector applied to all the
images (both training and test). In general, as expected the ground truth bounding boxes give
better results, but there are also some exceptions. decaf trained with ground-truth bound-
ing boxes is among the best on both datasets, but when using the detector bounding boxes
the performance drops significantly. In contrast fisher is less sensitive to the bounding
box localization. Considering the absolute performance of the different methods, we clearly
notice that the baseline based on bag-of-words BoW (dictionary of size 4000 and the final
representation is L2-normalized) is the poorest method for pose representation. The best
representation on both datasets is fisher with spatial pyramid spm. Comparing sift and
sift+loc, we can see that also embedding spatial information in the low-level representa-
tion is still advantageous for pose estimation. Also the performance of decaf is quite good,
especially considering its much lower dimensionality. Based on these conclusions, we select
the two last methods for the next experiments.

EPFL AFW

Feature Type Encoding
MPPE

(ground-truth)
MPPE

(detector)
FVP±15

(ground-truth)
FVP±15

(detector)
sift BoW 56.6% 54.8% 43.4% 49.4%
sift fisher 68.4% 68.2% 51.1% 54.3%
sift fisher+spm 82.1% 80.1% 73.3% 69.7%

sift+loc fisher+spm 82.8% 81.8% 75.8% 70.3%
decaf - 77.2% 72.0% 77.3% 67.9%

Table 1: An evaluation with training and testing data from ground-truth bounding boxes
(3rd and 5th columns) and output of detector (4th and 6th columns) on the EPFL car dataset
and AFW faces dataset. MPPE is computed as the average of the diagonal of the confusion
matrix. FVP±15 is the fraction of faces that are within ±15 error interval, counting missed
detections as infinite error.
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EPFL AFW
Method nv-suppression 8 bins 16 bins 36 bins FVP±15 FVP±30

fisher+spm × 81.8% 71.2% 46.4% 70.3% 84.2%
fisher+spm X 80.6% 72.2% 51.8% 78.6% 90.6%

decaf × 72.0% 62.1% 39.1% 67.9% 82.3%
decaf X 76.6% 67.8% 45.9% 86.5% 93.4%

Table 2: The effect of suppressing negative neighboring viewpoints samples. On EPFL car
dataset, MPPE is computed . Last two columns are fraction of faces that are within ±15 and
±30 error interval respectively, counting missed detections as infinite error for AFW dataset.

Figure 1: Evaluation of 8-bins pose estimation problem on EPFL car dataset (left) and AFW
face dataset (right) for different layers of CNN network. Horizontal lines are Fisher vector
performances.

Effect of neighbor samples. In table 2 we investigate the impact of nv-suppression
of negative samples explained in sect. 3. On EPFL, for the coarsest binning (8 bins), the
suppression scheme does not help, probably because the confusion between nearby poses in
coarse binning is not an issue. However, when using a finer binning, the advantage of the
nv-suppression is quite evident. Consequently, we continue our experiments with the
suppression of the nearest neighbors enabled.

Decaf. Next, we investigate the impact of features obtained from different layers of a convo-
lutional neural network for the task of pose estimation. To this end, we select the output of
different layers as features and compute the performance for every layer as shown in figure 1.
Note that we use 8 bins for the EPFL car dataset and apply the nv-suppression on neg-
ative samples on all fisher, fisher+spm and decaf. On the EPFL car dataset and the
PASCAL3D+ dataset (table 6), fisher+spm outperforms decaf but for the AFW faces
that with 13 different poses, decaf performs better. In addition, as it is shown, the last
convolutional layer (layer 5) outperforms the others in both datasets. Finally, it is interesting
to notice that the lower convolutional layers perform quite well whereas in other tasks gen-
erally they do not perform good.

Computational Cost. Another advantage of the proposed method is the reduced compu-
tational cost. Although a precise evaluation for each method in terms of time is difficult
to obtain we can still reason about the computational cost of the different methods. We
can safely claim that all the methods based on DPM are computationally more demanding
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bins [22] [19] 3D2PM-C Lin [24] 3D2PM-D [24] ours(fisher+spm) ours(decaf)
8 bins - 73.7% 78.3% 78.5% 80.6% 76.6%

16 bins 41.6% 66.0% 69.0% 69.8% 72.2% 67.8%
36 bins - - 52.1% 45.8% 51.8% 45.9%

Table 3: Comparison with state of the art viewpoint classification methods on the EPFL
dataset.

bins 3D2PM-C Lin [24] 3D2PM-D [24] [10] ours(fisher+spm) ours(decaf)
8 bins 11.1 12.9 24.8 12.5 13.5
16 bins 6.9 7.2 - 6.75 7.75
36 bins 4.7 5.8 - 5.0 6

Table 4: Viewpoint estimation in terms of MAE for EPFL car dataset.

than ours. This is due to the fact that in our method we use standard DPM models with 6
components and the following step, based on FV or Decaf has a negligible cost. For exam-
ple, extracting SIFT, building a pyramid of Fisher vector and a 36-bins pose classification
takes on average 1.38, 0.73 and 0.19 seconds respectively on a quad-core processor using
MATLAB on the EPFL dataset. Extracting decaf features for an image takes on average
0.2 seconds while the training time for 36 one-vs-all SVM linear models for fisher+spm
and decaf is 290 and 6 seconds respectively. Instead, other methods generally use a DPM
component for each view, so that, especially when searching for fine pose estimation, the
computational cost will be higher (e.g. detection using the standard DPM takes around 4
seconds for each EPFL image, while with 36 bins the computational cost of viewpoint-DPM
should be 6 times the standard DPM model).

Comparison with state-of-the-art. Table 3 compares our method to other state-of-the-art
methods on the EPFL car dataset. fisher+spm outperforms all methods including 3D
models on this dataset for 8 and 16 viewpoint bins and is slightly worse than the continuous
model of [24] but outperforms their discrete version. decaf could not obtain state of the art
performance on this dataset but it is on par with the discrete model of [24].

For EPFL car dataset, as the angular viewpoint annotations are provided, we can also
use the Median Angular Error for evaluation. Note that MAE is a metric for evaluation of
continuous estimation but we are using a discrete estimation. Thus, for each bin, we assume
the center of the bin as the estimated angular viewpoint. In terms of MAE, as shown in
table 4, fisher+spm outperforms state-of-the-art discrete models (3D2PM-D) that use 3D
CAD information and is on par with continuous appearance models (3D2PM-C Lin).

Table 5 shows the results of our methods and the current state-of-the art on the AFW
dataset. Within ±30 degree error tolerance, fisher+spm and decaf both perform well
and outperform all the other methods whereas with ±15 degrees error tolerance, decaf
outperforms all other methods. These results are quite important especially considering that
[36] is tuned for face detection and pose estimation problems while fisher+spm and
decaf are applicable to any other category.

For PASCAL3D+ dataset, the results of our methods and methods of [35], [25] are shown
in Table 6. Same as [35], we ignore the bottle category since its instances are often symmet-

1From Zhu et al. [36]
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method ±15 ±30
Face.com1 64.3% 86.5%
[36]- indp. model 81.0% 89.0%
[36]- shared. model 76.9% 87.0%

Multi-HoG1 74.6% 85.0%
ours(fisher+spm) 78.6% 90.6%
ours(decaf) 86.5% 93.4%

Table 5: Comparison with state of the art pose estimation methods on the AFW face dataset.

AP/AVP aeroplane bicycle boat bottle bus car chair diningtable motorbike sofa train tvmonitor avg.
[35]-4V 40.0/34.6 45.2/41.7 3.0/1.5 -/- 49.3/26.1 37.2/20.2 11.1/6.8 7.2/3.1 33.0/30.4 6.8/5.1 26.4/10.7 35.9/34.7 26.8/19.5
[25]-4V 41.5/37.4 46.9/43.9 0.5/0.3 -/- 51.5/48.6 45.6/36.9 8.7/6.1 5.7/2.1 34.3/31.8 13.3/11.8 16.4/11.1 32.4/32.2 27.0/23.8

ours(fisher+spm)-4V 40.1/26.7 48.0/34.4 6.1/2.3 -/- 54.1/50.7 36.1/28.9 14.8/11.1 9.1/5.4 32.9/29.4 18.9/17.3 36.1/32.5 33.2/26.9 29.9/24.1
ours(decaf)-4V 40.1/24.5 48.0/32.9 6.1/2.4 -/- 54.1/49.6 36.1/24.1 14.8/10.7 9.1/6.1 32.9/27.6 18.9/14.2 36.1/32.2 33.2/27.6 29.9/22.9

[35]-8V 39.8/23.4 47.3/36.5 5.8/1.0 -/- 50.2/35.5 37.3/23.5 11.4/5.8 10.2/3.6 36.6/25.1 16.0/12.5 28.7/10.9 36.3/27.4 29.9/18.7
[25]-8V 40.5/28.6 48.1/40.3 0.5/0.2 -/- 51.9/38.0 47.6/36.6 11.3/9.4 5.3/2.6 38.3/32.0 13.5/11.0 21.3/9.8 33.1/28.6 28.3/21.5

ours(fisher+spm)-8V 40.1/23.6 48.0/27.6 6.1/2.4 -/- 54.1/50.3 36.1/26.6 14.8/9.1 9.1/6.0 32.9/24.7 18.9/16.9 36.1/31.3 33.2/26.5 29.9/22.3
ours(decaf)-8V 40.1/17.7 48.0/27.7 6.1/1.9 -/- 54.1/49.6 36.1/23.3 14.8/7.8 9.1/4.8 32.9/27.1 18.9/11.1 36.1/31.2 33.2/26.4 29.9/20.8

[35]-16V 43.6/15.4 46.5/18.4 6.2/0.5 -/- 54.6/46.9 36.6/18.1 12.8/6.0 7.6/2.2 38.5/16.1 16.2/10.0 31.5/22.1 35.6/16.3 30.0/15.6
[25]-16V 38.0/15.9 45.6/22.9 0.7/0.3 -/- 55.3/49.0 46.0/29.6 10.2/6.1 6.2/2.3 38.1/16.7 11.8/7.1 28.5/20.2 30.7/19.9 28.3/17.3

ours(fisher+spm)-16V 40.1/16.3 48.0/18.0 6.1/1.5 -/- 54.1/42.9 36.1/19.6 14.8/7.4 9.1/4.6 32.9/15.9 18.9/13.8 36.1/29.0 33.2/21.5 29.9/17.3
ours(decaf)-16V 40.1/11.2 48.0/19.5 6.1/1.7 -/- 54.1/43.5 36.1/19.4 14.8/6.3 9.1/4.6 32.9/20.6 18.9/10.5 36.1/28.6 33.2/22.3 29.9/17.1

[35]-24V 42.2/8.0 44.4/14.3 6.0/0.3 -/- 53.7/39.2 36.3/13.7 12.6/4.4 11.1/3.6 35.5/10.1 17.0/8.2 32.6/20.0 33.6/11.2 29.5/12.1
[25]-24V 36.0/9.7 45.9/16.7 5.3/2.2 -/- 53.9/42.1 42.1/24.6 8.0/4.2 5.4/2.1 34.8/10.5 11.0/4.1 28.2/20.7 27.3/12.9 27.1/13.6

ours(fisher+spm)-24V 40.1/12.3 48.0/12.6 6.1/1.3 -/- 54.1/40.2 36.1/15.9 14.8/5.5 9.1/4.6 32.9/13.2 18.9/10.2 36.1/20.4 33.2/15.0 29.9/13.7
ours(decaf)-24V 40.1/10.0 48.0/12.9 6.1/0.8 -/- 54.1/39.8 36.1/16.7 14.8/4.9 9.1/4.5 32.9/13.4 18.9/7.4 36.1/21.7 33.2/18.9 29.9/13.7

Table 6: The results of [35], [25] and ours for 4, 8, 16 and 24 viewpoint angles respectively
on PASCAL3D+ dataset. The first number is AP of object detection and the second one is
AVP of pose estimation.

category [23] [19] [25] [10] [24] [18] ours(fisher+spm) ours(decaf)
cars 86.1% 89.0% 97.9% 85.3% 95.8% 70.0% 95.8% 97.9%

bicycle 80.8% 90.0% 98.9% - 96.0% 75.5% 98.1% 86.1%

Table 7: Viewpoint estimation on car and bicycle classes from Object3D dataset (MPPE).

ric across different viewpoints. We notice the same trend as in the previous experiments:
fisher+spm performs best on all viewpoint angles. decaf results are slightly lower but
still comparable with [25] which relies on 3D CAD models. For more classes like train or
sofa, our method performs markedly better than [25], whereas for other classes, like bicycle
and car, [25] performs better. We believe this is correlated with the fact that for the latter
classes, more and better 3D CAD models are available and therefore a better 3D representa-
tion can be learned.

For cars and bicycles of the 3D Object dataset for which objects are provided in 8 dif-
ferent poses, as shown in table 7, both decaf and fisher+spm again outperform most of
the other methods in the literature and achieve competitive performance to methods that use
3D CAD data ( [25] and [24]).

5 Conclusion

In this paper, we have presented a study of different methods for pose estimation on four
well-known and challenging datasets. Through an extensive evaluation we can clearly see
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that, in contrast to common believe, the very simple framework based on the extraction of
features on the object bounding box using modern features (decaf) or in combination with
modern encodings (fisher+spm) can in most of the cases outperform the state-of-the-
art including methods based on 3D or much more complex and computationally expensive
models. This suggests that the next generation of pose estimation methods should probably
combine these powerful 2D representations with 3D reasoning.
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