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Abstract

Only if we can estimate the colour of the prevailing light - and discount it from the
image - can image colour be used as a stable cue for indexing, recognition and tracking
(amongst other tasks). Almost all illumination estimation research uses the angle be-
tween the RGB of the actual measured illuminant colour and that estimated one as the
recovery error. However here we identify a problem with this metric. We observe that
the same scene, viewed under two different coloured lights for the same algorithm, leads
to different recovery errors despite the fact that when we remove the colour bias due to
illuminant (we divide out by light) exactly the same reproduction is produced.

We begin this paper by quantifying the scale of this problem. For a given scene
and algorithm, we solve for the range of recovery angular errors that can be observed
given all colours of light. We also show that the lowest errors are for red, green and
blue lights and the largest for cyans, magentas and yellows. Next, we propose a new
reproduction angular error which is defined as the angle between the image RGB of a
white surface when the actual and estimated illuminations are ‘divided out’. Reassur-
ingly, this reproduction error metric, by construction, gives the same error for the same
algorithm-scene pair. For many algorithms and many benchmark datasets we recompute
the illuminant estimation performance of a range of algorithms for the new reproduction
error and then compare against the algorithm rankings for the old recovery error. We find
that the overall rankings of algorithms remains, broadly, unchanged - though there can
be local switches in rank - and the algorithm parameters provide that the best illuminant
estimation performance depend on the error metric used.

1 Introduction

Colour constancy has two parts. First, the illuminant colour is estimated. Second the colour
bias due to the illumination is removed (eg. by dividing the image RGBs by the RGB esti-
mate of the colour of the light [2]). Illuminant estimation is a field of great study and there
are literally scores of algorithms proposed each year. Only if we can estimate the colour of
the prevailing light - and discount it from the image - can image colour be used as a stable
cue for indexing, recognition and tracking, etc. [1, 16, 24, 26]. This said it is a matter of
some interest to quantify which algorithm works best and where each algorithm is in the
league table of performance.
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To measure performance we need to have an agreed set of benchmark test images. Here
the ‘correct’ answer is defined to be the RGB of a white tile placed in the scene. Then,
we need to measure the error of the estimated light RGB against the known ground truth.
Because we cannot determine the absolute brightness of the light, recovery error is usually
defined in an intensity independent manner. The recovery angular error (or simply the an-
gular error) is the most widely used metric for evaluation of colour constancy algorithm
performance [17, 21] and is defined as:

errrecovery = cos−1(
(ρE ·ρEst)

‖ρE‖‖ρEst‖
) (1)

where ρE denotes the RGB of the actual measured light, ρEst denotes the RGB estimated by
an illuminant estimation algorithm and ‘.’ denotes the vector dot product. Over a benchmark
set, the average angular performance is calculated (including mean, median, and quantiles)
and different algorithms are ranked according to these summary statistics [19].

In this paper, we argue that recovery angular error despite its wide spread adoption has a
fundamental weakness which casts doubt on its suitability. To illustrate this point we show at
the top of Figure 1 four images of the same scene from the SFU Lab dataset [3]. Notice how
much the colour (due to illumination) varies from left to right. Now, using the simple gray-
world algorithm [4] for illuminant estimation we estimate the RGB of the light (the average
image colour is the estimated colour of the light). Dividing the images by this estimate
we produce the image outputs shown in the second row. In this case gray-world works
reasonably well and the object colours look correct (though, of course this is not always the
case). It is easy to show - as shown here - that dividing out by the gray-world estimate (or,
indeed the estimates made by most algorithms) that the same output reproduction is made.
In the 3rd row of the figure we show the recovery angular errors (the plot with open bullets).
Even though the same reproduction is produced the recovery angular error varies from 5.5◦

to 9◦ (an 80% difference).
That recovery angular error is disconnected from how the estimates of the illuminant are

used, is a serious problem. To illustrate how serious, consider an illuminant that is very red
i.e. has an RGB: (1,ε ,ε). Under such a red light all image colours will be similarly red:
(kr,εkg,εkb) where kr, kg and kb are the fraction of light that is reflected from a surface in
each of the colour channels. Clearly, the gray-world estimate in this case will be a vector
that is approximately in the same direction as the actual light i.e. the recovery error will be
small (and in the limit zero). Yet, these highly chromatic lights are precisely those for which
colour constancy algorithms fail.

In this paper we, in effect, propose that the illuminant estimation error should be de-
signed with the knowledge of how the estimate is to be used. Our work builds on that of
Forsyth [15], who measured how clustered the RGBs for the same surface were post colour
constancy processing: the better the colour constancy the more clustered the RGBs. Like
Forsyth we wished to tie illuminant estimation to colour constancy (i.e. post dividing out)
but retain the simplicity of the angular error idea. Here we propose the reproduction angular
error which is defined as the angle between the image RGB of a white surface when the
actual and estimated illuminations are ‘divided out’. Crucially we show that for almost all
algorithms the reproduction angular error is almost constant as the illumination changes (see
the filled circles in Figure 1).

We undertake a large study of existing illuminant estimation algorithms running on com-
mon benchmark datasets for both the legacy recovery angular error and our new reproduction
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Figure 1: Row 1: four images captured under very chromatic illuminant : (a) solux-
4700K+blue filter; (b) Sylvania warm white fluorescent; (c) solux-4700K+3202+blue filter;
(d) Philips Ultralume fluorescent. Row 2: corrected images using general gray-world [4]
algorithm (Images are from [3]). Row 3: The Recovery angular error (conventional error
measure) versus the Reproduction angular error (proposed error measure).

angular error. We are particularly interested in whether the rankings of algorithms changes.
The good news is - perhaps because most typical lights are not so chromatic - that the gross
ranking of algorithms remains broadly similar whether we use recovery or reproduction an-
gular error. However, there can be local ‘swaps’ in the rankings of algorithms and there are
significant changes in the specific parameters (which tune all algorithms) which work best.

In §2 we present the so-called RGB model of image formation which is useful for
analysing illuminant estimation algorithms. The reproduction angular error is presented in
§3, where we also bound the range of recovery angular errors that can be found by an algo-
rithm. There we also prove the stability of the reproduction error metric as the light changes.
In §4, a large number of illuminant estimation algorithms are benchmarked using reproduc-
tion angular error and the algorithms’ rankings compared with those found using recovery
error. The paper concludes in §5.

2 Background: Image Formation
The spectral power distribution illuminating a scene is denoted as E(λ ). The light strikes
an object with surface spectral reflectance S(λ ) and the light reflected is proportional to
the multiplication of the two functions. The light is then sampled by a sensor with a spectral
sensitivity R(λ ). The integrated response of a sensor to light and surface is calculated as [28]:

ρ
E,S
k =

∫
ω

Rk(λ )E(λ )S(λ )dλ k ∈ {R,G,B} (2)
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Where ω denotes the visible spectrum. Immediately, we see that light and surface play,
mathematically, the same symmetric role. Each is as important as the other in image forma-
tion.

Simple as eq. (2) is, it is in fact quite complex. It would, for example, be impossible
for an illuminant estimation algorithm to recover the full spectrum E(λ ). Thankfully, the
complexity of eq. (2) can, for most practical purposes be simplified and the RGB model of
image formation used [6] is:

ρ
S
k =

∫
ω

S(λ )Rk(λ )dλ ρ
E
k =

∫
ω

E(λ )Rk(λ )dλ ρ
E,S
k = ρ

E
k ρ

S
k (3)

Remarkably, eq. (3) with certain caveats, generally holds to a good approximation [13]. An
important interpretation of ρS

k is that it is the colour of the surface viewed under a white
uniform light E(λ ) = 1.

Colour constancy can be thought of as ‘mapping the RGBs measured in an image back
to a reference white lighting condition’ [15]. That is, the colour constancy problem involves
‘solving for’ ρS

k . Clearly, if we can estimate the illuminant (solve for the RGB of the light)
then by ‘dividing out’ we can estimate the surface colour. We rewrite eq. (3) in vector form:

ρ
E,S = ρ

E ∗ρ
S (4)

Note, the meaning of eq. (4) is that we multiply the RGB vectors ρE and ρS component-
wise. If ρEst denotes the estimate of the illuminant made by some algorithm then we recover
the colour of the surface (remove colour bias due to the colour of the prevailing light) by
calculating:

ρE,S

ρEst ≈ ρ
S (5)

where again the division of vectors here is component-wise. In eq. (5), how good the ap-
proximation is, depends on how well the illuminant is estimated.

In the context of this paper, two important results follow from the RGB model of image
formation. First, we can simulate some other, unknown, light E ′ by simply multiplying by
an arbitrary 3-vector:

ρ
E ′,S = d ∗ρ

E,S d = [α β γ]t α,β ,γ ≥ 0 (6)

For all E we can apply all all-positive vectors d. Secondly, assuming that the illuminant
estimate can be viewed as a kind of statistical moment of the image RGBs it follows that for
an N-pixel image:

ρ
Est = moment({ρE,S1 ,ρE,S2 , ...,ρE,SN}) (7)

Then from eq. (6) and eq. (7),

d ∗ρ
Est = moment({ρE ′,S1 ,ρE ′,S2 , ...,ρE ′,SN}) (8)

Eq. (8) teaches that if two lights are related by 3 scaling factors d then the corresponding
illuminant estimates are similarly related. Eq. (8) holds for most illuminant estimation algo-
rithms including gray-world [4], MaxRGB [22], shades-of-gray [12], 1st and 2nd gray-edge
algorithms [27], as well as the gamut-based methods [10, 14, 15, 18].
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Many of the statistical moments (eq. (7)) used to estimate the illuminant of the scene can
be summarised in a single equation [27]:(∫

|
δ nρ(x)

δxn |
pdx
)1/p

= kρ
Est
n,p,σ

(9)

Here ρ(x) is the camera response at location x of an RGB image. The image can be smoothed
with a Gaussian averaging filter with standard deviation σ pixels and after being smoothed
is differentiated with an order n differential operator. We then take the absolute Minkowski
p-norm average [12] over the whole image. The unknown value k represents the fact that the
true magnitude of the prevailing illuminants cannot be recovered. The tunable parameters
of σ and p-norm can be chosen so that the algorithms perform their best. For all statistical
moments calculated using eq. (9), eq. (8) is true.

3 Reproduction versus Recovery Angular Error

3.1 The range of recovery angular error
Figure 1 shows that even though there is the same image reproduction, the recovery angular
error for different light found using the same algorithms varies. How large is this variation?

Theorem 1. Given a white reference light (the RGB of the light is U = [1 1 1]t ) and denot-
ing the illumination estimate made by a ‘moment type’ illuminant estimation algorithm as µ

then the illuminant that maximises recovery angular error is an illuminant with 0 in exactly
one of the either R, G or B channels.

Proof. From eq. (6) and without the loss of generality we assume that the starting illuminant
is U (if it is not, we can map to U using 3 scaling factors). From eq. (8) the new illuminant
estimate from eq. (7) and eq. (8) is d ∗µ and the recovery error (eq. (1)) can be written as:

errrecovery(d,d ∗µ) = cos−1(
(α2µr +β 2µg + γ2µb)√

α2 +β 2 + γ2
√
(αµr)2 +(β µg)2 +(γµb)2

) (10)

Remembering d = [α β γ ] without loss of generality - as, in illuminant estimation, we are
only interested in the orientation of d - let us set α = 1. Assume we are given β and γ and
we ask the question: "does the error vary if we hold γ fixed and we solve for the optimal β ".
Observing that we maximize eq. (10) by minimizing the function within the parentheses, we
find β by minimizing f (β ):

f (β ) = (
(µr +β 2µg + γ2µb)√

1+β 2 + γ2
√
(µr)2 +(β µg)2 +(γµb)2

) (11)

The derivative of f (β ) is:

∂ f
∂β

=
−β ·

(
µr +µgβ 2 +µbγ2) ·(µr

2 +µg
2β 2 +µb

2γ2)(
1+β 2 + γ2

) 3
2 ·
(
µr2 +µg2β 2 +µb

2γ2
) 3

2

+
2µgβ ·

(
1+β 2 + γ2) ·(µr

2 +µg
2β 2 +µb

2γ2)(
1+β 2 + γ2

) 3
2 ·
(
µr2 +µg2β 2 +µb

2γ2
) 3

2
−

µg
2β ·
(
1+β 2 + γ2) ·(µr +µgβ 2 +µbγ2)(

1+β 2 + γ2
) 3

2 ·
(
µr2 +µg2β 2 +µb

2γ2
) 3

2
(12)
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In eq. (12), (β ) is the common factor in all three numerators and the solution to minimizing
f is β = 0. β is 0 for all γ (including the γ that maximizes eq. (11)). �

Lemma 1.1. Assuming α = 1 and β = 0, the recovery angular function has at most 3 sta-
tionary values.

Proof. Since α = 1 and β = 0, this leaves the function within the parentheses in eq. (10)
with γ as a variable and f (γ) is written as:

f (γ) =
(µr + γ2µb)√

1+ γ2
√
(µr)2 +(γµb)2

(13)

The derivative of f (γ) is calculated as:

∂ f
∂γ

=
(µr−µb)

2·γ·
(
µbγ2−µr

)
(γ2 +1)

3
2 ·(µb

2γ2 +µr2)
3
2

(14)

Which if it is set to zero leads to:

γ =±
√

µr/µb γ = 0 (15)

when γ = 0 the angle is a global minimum and equals to 0. When γ =+
√

µr/µb (the lights
are all positive) then the function in eq. (13) is a local minimum (which one can show by
applying the standard second derivative test). This implies that cos−1( f (γ)) at this point is a
local maximum. �

Of course we can repeat the above argument, setting α = 0 or γ = 0. So, it follows that
there are 3 possible maximums, one of which is the global maximum.

It follows that lights with one wavelength set to zero (eg. [1 0
√

µr/µb]) maximise
the recovery angular error for a given illuminant estimation algorithm applied on a given
scene(lemma 1.1). It follows from the theorem that lights which are cyan, purple and yel-
low result in the highest angular error. Conversely, as we saw in the introduction pure red,
green and blue lights induce the lowest error. In Figure 2, the two magenta curves represent
cumulative probability distribution function of the analytical maximum errors for the two
algorithms - gray-world [4] (solid lines in Figure 2 (a)) and pixel-based gamut mapping [18]
(dashed lines in the same Figure) - for the 321 images of the SFU Lab dataset [3].

We are also interested in the maximum error for more typical ‘real’ lights (eg. for lights
that are a convex combination of the measured lights for the SFU Lab dataset [3]). There
is a companion theorem (which space limitation does not allow us to reproduce here) which
allows us to find the maximum error of a convex set (in Figure 2, shown in blue). The actual
recovery angular error for the ground-truth illuminant provided by SFU Lab dataset [3] is
also included in this Figure (red lines). We can see that there is a great difference between
the maximum angular errors and the actual angular errors, specially for the gray-world al-
gorithm. Note that the maximum illumination error performance is similar for gray-world
and pixel-based gamut mapping (even though the average performances are quite different).
Also, even when typical lights are considered, the actual error is still significantly worse for
gray-world. With the advent of LED lighting, which have narrow emission spikes, it is now
more likely to encounter a light which induces a worst case error.
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(a) (b)
Figure 2: (a) Cumulative probability distribution of recovery angular errors for: ground-
truth light of SFU Lab dataset [3] (in red) , convex-set lights (in blue), analytical lights
(in magenta) of gray-world [4] (solid lines) and pixel-based gamut mapping [18] (dashed
lines) for the 321 images of SFU Lab dataset; (b) Cumulative probability distribution of
Reproduction angular errors of the same algorithms for the same dataset.

3.2 Reproduction Angular Error
The RGB model of image formation presented in section 2 teaches that as the illumination
changes (eq. (6)), then all the RGBs in the images are scaled by the same three multiplicative
factors [11]. Usually the estimated illuminant is ‘divided out’ to remove the colour bias due
to illumination. Eq. (5) shows how we can remove the bias of illumination by dividing out
the colour of the light. Let us rewrite eq. (5) for the specific example of a white surface
ρE,W = [1 1 1]t . We see that:

ρE,W

ρEst ≈U =
ρE,W

ρE,W (16)

Remembering we cannot recover the absolute brightness of the light, we define the Repro-
duction Angular Error - our new metric for assessing illuminant estimation algorithms -
as:

errreproduction = cos−1

(
(ρE,W/ρEst).U

|(ρE,W/ρEst)|
√
(3)

)
(17)

Theorem 2. Given a single scene viewed under two lights. The reproduction error of the
estimated light by a ‘moment type’ illuminant estimation algorithm is the same.

Proof. For a chromatic light defined with d = [α β γ]t (eq. (6)), using the fact presented in
eq. (7), the reproduction angular error (eq. (17)) can be written as:

errreproduction = cos−1

 ( α

αµr
+ β

β µg
+ γ

γµb
)√

( α

αµr
)2 +( β

β µg
)2 +( γ

γµb
)2
√

(3)

 (18)

It can be seen easily in eq. (18), that the scaling factors α , β and γ are cancelled. The repro-
duction error is stable regardless of the colour of the light. �
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In Figure 1 we show the same object under 4 chromatic lights together with the corre-
sponding images where the light colour is divided out. In the third row are the recovery and
reproduction angles for the illuminant estimates. Notice the large variation for the recovery
errors. Whereas the reproduction errors are much more stable. They are not exactly constant
as, although the RGB model of light formation is good, it is still an approximation [13].

4 Experiments and Results

We evaluate a representative selection of illuminant estimation algorithms which includes
MaxRGB [22], gray-world [4], shades-of-gray [12], 1st and 2nd gray-edge algorithms [27],
as well as the gamut-based methods [10, 14, 15, 18]. These algorithms were applied on the
well-known illuminant estimation datasets such as SFU Lab dataset [3], Gray-ball set [7] and
Colour-checker (by Shi) [23]. In addition, other colour constancy algorithms such as spatial-
correlations-based algorithms (denoted here as heavy tailed-based [5] and weighted gray-
edge [20]) are also included. The algorithms are previously evaluated using the recovery
angular error by Gijsenij et al. [19]. Here we repeat this experiment for our new reproduction
angular error.

Recovery error Reproduction Error
Method p σ Median Rank p σ Median Rank
Gray-world - - 7◦ 11 - - 7.5◦ 11
MaxRGB - - 6.5◦ 10 - - 7.4◦ 10
Shades of gray 7 - 3.7◦ 9 7 - 3.9◦ 8
1st Gray-edge 7 4 3.2◦ 7 14 4 3.58◦ 6
2nd Gray-edge 14 10 2.7◦ 4 15 10 3◦ 4
Pixel-based gamut - 4 2.26◦ 2 - 4 2.8◦ 3
Edge-based gamut - 2 2.27◦ 3 - 2 2.7◦ 2
Intersection-based gamut - 4 2.1◦ 1 - 3 2.5◦ 1
Union-based gamut - 2 3◦ 5 - 2 3.4◦ 5
Heavy tailed-based - - 3.5◦ 8 - - 4.1◦ 9
Weighted gray-edge 2 1 3.1◦ 6 2 1 3.62◦ 7

Table 1: Recovery and Reproduction median errors of several colour constancy algorithms
for SFU Lab dataset [7]. The ranks given to each algorithm are bold and underlined if they
have changed. The optimal parameters are also shown where applicable and different ones
are highlighted.

In Table 1, the recovery and reproduction median angular errors for the SFU Lab dataset
(321 images) [3] are shown. Where applicable the optimal parameters-Minkowski norm
and smoothing value (eq. (9))- are also determined. In this table we can already notice the
ranking of several algorithms (ranks shown in bold and underlined) have moved. To study
to what extent the ranking of these algorithms has changed using the new reproduction error
compared to the old recovery error, we performed the Kendall test [8, 25]. A change in the
ranking of a selection of illuminant estimation algorithms can be considered a permutation
problem. The Kendall test is a method to compare two permutations (it correlates to the
number of exchanges needed in a bubble sort to convert one permutation to the other [9]).
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Figure 3: The pictorial scheme of Kendall test for the changed rank algorithms in Table 1.

The Kendall test statistic T can give us a measure of correlation between pairs of ranks
where there are no ties. A pair of unique observations (x1,y1) and (x2,y2) are said to be
discordant if the ranks of the two elements (x1,x2) and (y1,y2) do not agree, otherwise the
pair are concordant. In case of no ties, T is defined as:

T =C−D, (19)

where C is the number of concordant pairs and D is the number of discordant pairs.
Figure 3 depicts a pictorial scheme of the Kendall test for the 6 algorithms with changed

ranks, the total number of pairings is 6(6−1)/2 = 15 and the number of the crossings repre-
sents the number of discordant pairs. For the 6 algorithms with changed ranks in Table 1, the
Kendall test statistic is T = 12−3 = 9. For our data we conclude the rankings are discordant
at 97% significance level (i.e. with type I error (P) < 0.03) [8].

Notice also that in Table 1 the optimal parameters (eq. (9)) chosen for the tunable algo-
rithms such as 1st and 2nd gray-edge algorithms [27] differ for recovery versus reproduction
angular error.

We compute similar ranking results for different summary error measures - e.g. the mean
and 95% quantiles - and come to the same conclusion: broadly the rankings change a little
using the new reproduction error and optimal algorithm parameters also change. We come
to the same conclusion using the Colour-checker [23] and the Gray-ball [7] data sets1.

5 Conclusion

In this paper we propose a reproduction angular metric to assess the performance of illumi-
nant estimation algorithms and argue that it improves upon the widely used recovery angular
error. The latter measure was shown - for the same scene and algorithm pair - to result in a
huge range of angular errors (which we solved for this error interval) even though the images
reproduced (after dividing out the light) are the same. In contrast, the proposed reproduction
angular error (which measures how well a white surface is reproduced) is by construction
much more stable. We show that using the new measure, the rankings of algorithms reported
in the literature while broadly similar, can change. The ranks of local pairs of algorithms
(e.g. pixel-based and edge-based gamut mapping [18]) can switch and this switching results
in rankings which are statistically different. Also, using the new reproduction error, the op-

1http://colour.cmp.uea.ac.uk/datasets/illuminant-estimation-errors.html
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timal parameters used to tune a given illumination estimation algorithm can change.
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