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Abstract

Recent advances in imaging sensors, such as Kinect, provide access to the synchro-
nized depth with color, called RGB-D image. In this paper, we propose an unsupervised
method for indoor RGB-D image segmentation and analysis. We consider a statistical
image generation model based on the color and geometry of the scene. Our method con-
sists of a joint color-spatial-axial clustering method followed by a statistical planar region
merging method. We evaluate our method on the NYU depth database and compare it
with existing unsupervised RGB-D segmentation methods. Results show that, it is com-
parable with the state of the art methods and it needs less computation time. Moreover,
it opens interesting perspectives to fuse color and geometry in an unsupervised manner.

1 Introduction

Image segmentation is one of the most widely studied problems that groups perceptually
similar pixels based on certain features (e.g. color, texture etc.) [30]. Numerous researches
[8, 12, 15, 25, 31] have shown that the use of depth as an additional feature improves accu-
racy of scene segmentation. However, it remains an important issue - what is the best way to
fuse color and geometry in an unsupervised manner? We focus on this issue and propose a
solution.

A common approach for RGB-D segmentation is to extract different features, design ker-
nels and classify pixels with learned classifiers. Ren et al. [25] proposed contextual models
that combine kernel descriptors with a segmentation tree or with superpixels. For this task,
they extended the well-known gPb-UCM algorithm [2] for RGB-D image. The method of
Silberman et al. [27] starts from superpixels, aligns them with 3D planes, and finally ap-
plies a hierarchical segmentation using a trained classifier. Gupta et al. [12] first compute
gPb [2] from a combination of geometric and monocular contour cues, then detect contours
via a learned classifier and finally generate a hierarchy of segmentation. These methods are
supervised i.e. require training from ground truth.

Among the unsupervised methods, Dal Mutto et al. [8] fuse color with 3D position using
a multiplier and then apply Normalized Cut (N-Cut) method to cluster pixels. Taylor et al.
[31] first extract edges, construct a triangular graph and apply N-Cut on the graph. Next,
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they extract planar surfaces from the segments using RANSAC [30] and finally merge the
co-planar segments using a greedy merging. Beside these, several methods [22, 29] extend
the graph based segmentation [9] in order to fuse color with depth.

In this paper, we propose an unsupervised (i.e. no training) scene segmentation method
that combines a clustering method with a region merging method. Our method first identifies
the possible image regions using clustering w.r.t. a statistical image generation model and
then merges regions based on planar statistics. The image model is based on three features':
color, 3D position and surface normal. It assumes that these features are issued indepen-
dently (naive Bayes [19] assumption) from a finite mixture of probability distributions.

Finite Mixture Models are often used for cluster analysis [4, 6, 19]. In image analysis
and segmentation these models have been employed with the Gaussian distribution to cluster
the image pixels [1, 11, 16, 20]. Our image model considers the Gaussian [19] distribution
for color and 3D position and the Watson Distribution (WD) [28] for surface normal. We
use WD because it overcomes the directional ambiguity and noise [13, 26] related to surface
normal. Moreover, it provides adequate statistics to explain the planar geometry of regions,
see [14] for more details.

We exploit Bregman Soft Clustering (BSC) [4] to cluster pixels w.r.t. our image model.
BSC is a centroid based parametric clustering method which has been effectively employed
for mixture models based on exponential family of distributions [21]. Compared to the
traditional Expectation Maximization algorithms, BSC provides additional benefits: (a) it
considers Bregman Divergence that generalizes a large number of distortion functions [4];
(b) simplifies computationally expensive Maximization step and (c) is applicable to mixed
data type.

Existing region merging methods [18, 23, 24, 32] exploit color and edge. For indoor
scenes, the use of color is often unreliable due to numerous effects caused by spatially vary-
ing illumination [12]. On the other hand, the planar surfaces are important geometric prim-
itives which are often employed for scene decomposition [12, 26, 27] and grouping [31].
This motivates us to develop a region merging method based on planar property rather than
color.

We can summarize our contributions as follows: (a) we propose a statistical RGB-D im-
age generation model (Sec. 2.1) that incorporates both color and geometry of a scene; (b) we
develop an efficient soft clustering method (Sec. 2.2) by exploiting the Bregman Divergence
[4] to cluster heterogeneous data w.r.t. the image model; (c) we propose a statistical region
merging method (Sec. 2.3) based on planar geometry, which can be used with other RGB-D
segmentation methods and (d) we provide a benchmark (Sec. 3) on the NYU depth database
V2 (NYUD?2) [27] using standard evaluation metrics [2, 10]. Results show that our method
is comparable with the state of the art and better w.r.t. computation time.

In the rest of the paper we describe our proposed method in Section 2, present the exper-
imental results with discussion in Section 3 and finally draw conclusions in Section 4.

IClustering using only 3D points often fails to locate the intersections among the planar surfaces with different
orientations such as wall, floor, ceiling, etc. This is due to the fact that the 3D points associated to the intersections
are grouped into a single cluster. On the other hand, the use of only normals groups multiple objects with nearly
similar orientations into the same cluster irrespective of their 3D location. In order to overcome these limitations
and to describe the geometry of indoor scenes, we take both features into account.
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2 Methodology

2.1 Image Generation Model and Segmentation Method

We propose a statistical image model that fuses color and shape (3D and surface normal)
features. The model assumes that the features are independently issued from a finite mix-
ture of multivariate Gaussian (for color and 3D) and a multivariate Watson distribution (for
surface normal). Mathematically, such a model with £ components has the following form:

k
§ (100 = Y T fe KNG 550 fe el 200 o (V)
j=1

Here x; = {xlc, f , f\' } is the feature vector of the ith pixel with i = 1,...,M. Superscripts

denote: C - color, P - 3D position and N - normal. @ = {7;, gk, j,k,uﬁk,):?k,u;\jk,
Kj'\,lk} j=1...k denotes the set of model parameters where 7; is the prior probability, u;x is
the mean, X; is the variance-covariance matrix and k; is the concentration of the jth
component. f,(.) and f,,(.) are the density functions of the multivariate Gaussian distribution
(Section 2.2.2) and the multivariate Watson distribution (Section 2.2.3) respectively.

Fig. | illustrates the work flow of our RGB-D segmentation method that consists of two
tasks: (1) cluster features and (2) merge regions. The first task performs a joint color-spatial-
axial clustering and generates a set of regions. The second task performs a refinement on the
set with the aim to merge regions which are susceptible to be over-segmented. In the next
two sub-sections we present our methods to accomplish these tasks.

ada T,

h e

RAG using BD Final Segmentation

JCSA Clustered Image

Normal

Figure 1: Work flow of the proposed segmentation method.

2.2 Joint Color-Spatial-Axial (JCSA) clustering

We develop a Joint Color-Spatial-Axial (JCSA) clustering method that estimates the param-
eters of the mixture model (Eq. (1)), clusters the pixels and hence provides the regions in
the image. However, notice that in an unsupervised setting the true number of segments are
unknown. Therefore, we assume a certain maximum number of clusters (k = k;,,4,). Such an
assumption often causes an over-segmentation of the image. In order to tackle this issue, it
is necessary to merge the over-segmented regions (see Sec. 2.3).
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2.2.1 Exponential Family of Distributions (EFD) and Bregman Divergence

A multivariate probability density function f(x|n) belongs to the exponential family if it has
the following (Eq. (3.7) of [4], Eq. (60) of [21]) form?:

S (xIn) = exp (=Dg (1(x),m)) exp (k(x)) @

and
Dg (M, m2) = G(m) —G(m2) — (m —n2,VG(m2)) 3)

with G(.) the Legendre dual of log normalizing function which is a strictly convex function.
VG the gradient of G. 7(x) denotes the sufficient statistics and k(x) is the carrier measure.
The expectation of the sufficient statistics #(x) w.r.t. the density function (Eq. (2)) is called
the expectation parameter (7). Dg is the Bregman divergence computed from expectation
parameters: it can be used to compute the distance between two distributions of the same
exponential family, defined by two expectation parameters 1; and 1. We give now the
particular forms obtained with the Gaussian distribution and the Watson distribution.

2.2.2 Multivariate Gaussian Distribution

For a d dimensional random vector x = [x], ...,xd]T € R?, the multivariate Gaussian distri-
bution is defined as [21]:

fe(x|u,X) = (27r)d/2(ljet(2)1/2€Xp (—é(x—u)”i%x—u)) “4)

Here, u € R denotes the mean and ¥ denotes the variance-covariance symmetric positive-
definite matrix. To write the multivariate Gaussian distribution in the form of Eq. (2), the
elements are defined as [21]: sufficient statistics #(x) = (x, —xx! ); carrier measure k(x) = 0;
expectation parameter 1) = (¢, ®) = (i, —(E+pu’)) and Go(n) = — 3 log(1+ 9T @ 1¢9) —
log(det(®@)) — 4log(27e).

2.2.3 Multivariate Watson Distribution

For a d dimensional unit vector X = [x1,...,x4]" € $4~1 c R? (i.e. ||x]|, = 1), the multivariate
(axially symmetric) Watson distribution (mWD) is defined as [17]:

fW(Xll'L’ K) = M(1/27d/2, K)il exp (K(“TX)2> = fw(—x|ﬂ7 K) )

Here, u is the mean direction (with ||i||, = 1), k € R the concentration and M (1/2,d /2, x)

the Kummer’s function [17, 28]. To write the mWD in the form of Eq. (2), the elements are
T

defined as: sufficient statistics #(x) = [x%,...,xfl,\/ixlxg,...,ﬁxd,lxd} ; carrier measure

k(x) = 0; expectation parameter 1) as:

n=lnl,v ©)

%In order to keep our formulations concise, we use the expectation parameters 1 to define the Exponential
Family of Distributions. However, the other form [4, 11, 19, 21] f(x|0) = exp ({¢(x),0)) — F(0) +k(x)) and
related derivations are available in [14] or in the supplementary materials.
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T
where v = [ui--.,uj,ﬁuluz,---,x@udflud] and

Gw(n)=K||n||2—10gM(1/2’d/27K) (N

With the above formulation, for a set of observations ¥ = {x;};=i__n we estimate 1 =
E[t(x)] and x with a Newton-Raphson root finder method as [28]:

g(1/2,d/2:) — Inll,
¢(1/2,d/2: %))

where g(1/2,d/2;.) is the Kummer-ratio, g (1/2,d/2;.) is the derivative of g(1/2,d/2;.).
See [14] or the supplementary materials for additional details.

®)

Ki+1 = K| —

2.2.4 Bregman Divergence for the combined model

Our image model (in Eq. (1)) combines different exponential family of distributions (as-
sociated to color, 3D and normal) based on independent (naive Bayes [19]) assumption.
Therefore, Bregman Divergence (BD) of the combined model can be defined as a linear
combination of the BD of each individual distributions:

DE"™ (ni,m;) = DG, (0 nF) +DG4(nf',n]") +Dg ., (0" ) ©)

where, D¢ ¢ (.,.) denotes BD using multivariate Gaussian distribution and Dg,,,(.,.) denotes
BD using multivariate Watson distribution. Then, it is possible to define, with expectation

parameter 1 = {n<,n” n"}:

G (1) = Gg(N°) + Gg(n") + Gu(n™) (10)

2.2.5 Bregman Soft Clustering for the combined model

Bregman Soft Clustering exploits Bregman Divergence (BD) in the Expectation Maximiza-
tion (EM) framework [19] to compute the Maximum Likelihood Estimate (MLE) of the
mixture model parameters and provides a soft clustering of the observations [4]. In the ex-
pectation step (E-step) of the algorithm, the posterior probability is computed as [21]:

ﬂj,k exp (Gcomb(nj,k) + <l‘(X,’) _ nj,kv VGCUmb(nj,k)>)
Yy mexp (Geomb (1 ) + (1 (xi) — Mg, VG (m14)))
Here, 1; x and 7, denote the expectation parameters for any cluster j and / given that the

total number of components is k. The maximization step (M-step) updates the mixing pro-
portion and expectation parameter for each class as:

p(vi=jxi) = ,j=1,..,k (A1)

1 Y2 p (%= jlx)xi
— ) p(yi=jx) and n;; = =5 :
M,; ’ Mop (v =jlxi)

Wik = (12)

Initialization is a prominent issue and has significant impact on clustering. Our initial-
ization procedure consists of setting initial values for prior class probability (7; ) and the
expectation parameters (1) with 1 < j < k. We initialize 7 and 1 associated to the Gaus-
sian and Watson distributions using a combined k-means type clustering. After initialization,
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we iteratively apply the E-step and M-step until the convergence criteria are met. These cri-
teria are based on maximum number of iterations (e.g. 200) and a threshold difference (e.g.
0.001) between the negative log likelihood values (see Eq. (13)) of two consecutive steps.

M

nLLH = — Y log(g (xi|®)) (13)
i=1

The above procedures lead to a soft clustering algorithm, which generates associated prob-
ability and parameters for each components of the proposed model in Eq. (1). Finally, for
each sample we get the class label (;) using the updated combined BD (9):

%= gr%miEDg”’”b(t(x,'),nj,k) (14
J=1.

2.3 Region Merging

In the previous step we cluster pixels with a high number of components, which causes over-
segmentation. Therefore, we need to merge the over-segmented regions. To this aim, first we
build a Region Adjacency Graph (RAG) [32] (see Fig. 1) by considering that each region is
anode and each node has edges with its adjacent nodes. Then, similar to the standard region
merging methods [23, 24, 32], we define a region merging predicate and merging order.

2.3.1 Region Adjacency Graph (RAG)

Let R = {ri}i—1,..m be the set of regions that we obtain from the JCSA clustering; G =
(V,E) be an undirected graph represents the RAG, where V = {v;};=1 .y is the set of nodes
corresponding to R and E is the set of edges among adjacent nodes. Each node v; consists
of the parameters (1 and k) of the Watson distribution (Sec. 2.2.3) associated with region r;.
Each edge e;; consists of two weights: w,, based on statistical dissimilarity and w;,, based
on boundary strength between adjacent nodes v; and v;. The weight wy is defined as:

wa(vi,v;) = min(Dg (0, n?), D, (n¥,n}Y)) (15)

where, D, (nY, 1Y) is the Bregman Divergence (Eq. (3)) among the Watson distributions
associated with regions r; and r;. The weight w;, is defined as:

1 rgbd
wp(vi,vi) = —— (b (16)
Co ) |"iﬂrj|be§ﬁrj ¢ ()

where, r;(r; is the set of boundary pixels among two regions, |.| denotes the cardinality and
Ig”hd is the normalized magnitude of image gradient (MoG) [30] computed from the RGB-D
image. Iggbd is obtained by first computing MoG for each color channels (7, Ié, Ig) and

depth (Ig;) individually, and then taking the maximum of those MoGs at each pixel.

2.3.2 Merging Strategy

Our merging strategy is an iterative procedure that proceeds by employing merging predi-
cate among adjacent nodes in a certain order. Once two nodes are merged, the information
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regarding the merged node and its edges are updated immediately. This procedure continues
until no valid candidates are left to merge. We define the region merging predicate P;; as:

true, if (a) kj > Kk, and
(b) wa(vi,v;) < thq and wy,(v;,v;) < thy and

Pi=
Y (¢) planaroutlier ratio > thy;

17)
false, otherwise.

where ; is the concentration (sec. 2.2.3) of region ;. K, is the threshold to define the planar
property of a region, th, and th;, are the thresholds associated with the distance weight w
(Eq. (15)) and boundary weight w;, (Eq. (16)). th, is the threshold associated with the plane
outlier ratio, which is computed by first fitting a plane to the 3D points with RANSAC and
then compute the ratio of inliers and outliers [31]. See Sec. 3 for details of these thresholds.

The predicate in Eq. (17) evaluates the candidacy (condition - (a)) of each node, eligi-
bility (condition - (b)) of merging a pair of nodes and consistency (condition - (c)) of the
merged node. candidacy of a node defines if it belongs to a planar surface. To this aim, we
analyze the concentration (k) associated to each node. This helps us to simplify the RAG
and filter out a number of nodes and hence reduce the computational time. eligibility of a
pair of nodes determines whether they should be merged. We exploit the edge weights (wy
and wy,) of the RAG in order to check this condition. consistency is applied to a merged
region in order to check whether it remains a planar surface.

The region merging order [24] sorts the adjacent regions that should be evaluated and
merged sequentially. However, it changes dynamically after each merging occurs. We define
the merging order based on dissimilarity based weights w; (Eq. 15) among the adjacent
nodes. The adjacent node v; which has minimum wy(v;,v;) is considered to be evaluated
first. We use w, as the merging order constraint due to its ability to provide a measure of
dissimilarity among regions. Such a measure is based on the mean direction (i) and the
concentration (k) of the surface normals of the regions. Therefore, with this constraint, the
neighboring region which is most similar w.r.t. i and x will be selected as the first candidate
to evaluate using Eq. (17).

3 Experiments and Results

In this section, we evaluate the proposed method on the benchmark image database NYUD2
[27] which consists of 1449 indoor images with RGB, depth and ground-truth information.
We convert (using MATLAB function) the RGB color information into L*a*b* (CIELAB
space) color because of its perceptual accuracy [7]. From the depth images, we compute the
3D coordinates and surface normals using the toolbox available with the database [27].

Our clustering method requires to set initial labels of the pixels and the number of clusters
k. We initialize it following the k-means++ [3] strategy with k = 20. For the region merging
we empirically set the thresholds as: k, = 5 to decide a region as planar, th;, = 0.2 to decide
the existence of boundary among two regions, th; = 3 to decide the distance among two
regions and th, = 0.9 to determine the goodness of a plane fitting.

We evaluate performance using the standard benchmarks [2] which are applied between
the test and ground truth segmentation: (1) Probability Rand Index (PRI), it measures likeli-
hood of a pair of pixels that has same label; (2) Variation of Information (Vol), it measures
the distance between two segmentations in terms of their average conditional entropy; (3)
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Boundary Displacement Error (BDE) [10], it measures the average displacement between
the boundaries of two segmentations; (4) Ground Truth Region Covering (GTRC), it mea-
sures the region overlaps between ground truth and test and (5) Boundary based F-Measure
(BFM), a boundary related measure based on precision-recall framework [2]. With these
criteria a segmentation is better if PRI, GTRC, BFM are larger and Vol and BDE are smaller.
First we study the sensitivity of the proposed method w.r.t. the parameters (k, k,, thy,
thy), which is presented in table 1. The parameter k belongs to the clustering (sec 2.2) while
Kp, thy and thy belong to the region merging method (sec 2.3). Note that, the parameter
th, = 0.9 is set by following [31] and hence we do not analyze it further. From table 1, we
observe that while PRI (1%) is quite stable, Vol (6%), BDE (8%) and GTRC (7%) provide
discriminating view w.r.t the parameters. The parameter k is inversely related to the number
of pixels in a cluster. In segmentation, a smaller k causes to loose details in the scene while
higher k splits the scene into more regions. We set kj, based on a study on NYUD2 (see
supplementary materials for details) which reveals that planar surfaces can be characterized
with concentration K >= 5. While, a lower Kk value selects non-planar surfaces to be merged,
a higher value may reject true planar surfaces for merging. Following the OWT-UCM [2]
method, we empirically set the value of th,. Similarly, we set th; empirically. In theory two
regions which belong to the same direction have a negligible value of Bregman divergence.
However, the inaccurate computation of the shape features and the presence of noise in
the acquired depth information often cause this divergence measure to be high. From our
experience with the images of NYUD2, th; should be within the range between 2 to 4.

1%,5,02,3} {20,x,,0.2,3} 120,5,th,,3} 120,5,0.2,1h,}

15 20 25 2 5 8 0.1 0.2 0.3 2 3 4

PRI 0.89 | 090 | 0.89 0.89 | 090 | 090 | 0.89 | 0.90 | 0.89 090 | 090 | 0.90

Vol 2.31 229 | 242 232 | 229 | 238 | 243 | 229 | 232 237 | 229 | 232

BDE 10.64 | 9.83 | 10.05 | 10.52 | 9.83 | 10.00 | 9.98 | 9.83 | 10.34 | 10.10 | 9.83 | 10.00

GTRC | 056 | 058 | 0.57 056 | 0.58 | 0.56 | 0.54 | 0.58 | 0.56 0.56 | 0.58 | 0.57

Table 1: Sensitivity of JCSA-RM with respect to the parameters {k, k,,,thy,,thy}.

We also compare the proposed method JCSA-RM (joint color-spatial-axial clustering
and region merging) with several unsupervised RGB-D segmentation methods such as: RGB-
D extension of OWT-UCM [25] (UCM-RGBD), modified Graph Based segmentation [9]
with color-depth-normal (GBS-CDN), Geometry and Color Fusion method [8] (GCF) and
the Scene Parsing Method [31] (SP). For the UCM-RGBD method we obtain best score with
threshold value 0.1. The best results from GBS-CDN method are obtained by using ¢ = 0.4.
To obtain the optimal multiplier (1) in GCF [8] we exploit the range 0.5 to 2.5. For the SP
method, we scaled the depth values (1/0.1 to 1/10 in meters) to use author’s source code [31].

Table 2 presents (best appears as bold) the comparison w.r.t. the average score of the
benchmarks. Results show that JCSA-RM performs best in PRI, Vol and GTRC and compa-
rable in BDE and BFM. The reason is that, BDE and BFM favor methods like UCM-RGBD
which is specialized in contour detection. This indicates that JCSA-RM can be improved by
incorporating the boundary information more efficiently.

Several segmentation examples to visualize the results are illustrated in Fig. 2. We
can see that the segmentation from JCSA-RM (our proposed) and UCM-RGBD are mostly
competitive. However, they have several distinctions: (a) JCSA-RM is better in providing the
detail of indoor scene structure whereas UCM-RGBD loose it sometimes (see ex. 3-5); (b)
UCM-RGBD provides better estimation of the object boundaries whereas JCSA-RM gives
a rough boundary and (¢) UCM-RGBD shows more sensitivity on color whereas JCSA-RM
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PRI | VoI | BDE | GTRC | BFM
UCM-RGBD [25] | 0.90 | 2.35 | 9.11 0.57 0.63
GBS-CDN [9] 0.81 | 2.32 | 13.23 | 0.49 0.53
GCF [8] 0.84 | 3.09 | 1423 | 0.35 0.42
SP [31] 0.85 | 3.15 | 10.74 | 0.44 0.50
JCSA 0.87 | 2.72 | 10.33 | 045 0.46
JCSA-RM 0.90 | 2.29 | 9.83 0.58 0.59

Table 2: Comparison with the state of the art.

is more sensitive on directions. The GBS-CDN method provides visually pleasing results,
however it often tends to loose details (see ex. 1-4) of the scene structure (e.g. merges
wall with ceiling). Results from the SP method seem to be severely effected by the varying
illumination and rough changes in surfaces (see ex. 3). The GCF method performs over-
segmentation (see ex. 1, 3, and 5-7) or under-segmentation (see ex. 2 and 4), which is
a drawback of such algorithms as they are often unable to estimate the correct number of
clusters in real data. Moreover, the GCF method often fails to discriminate major surface
orientations (see ex. 1, 2 and 4) as it does not consider the direction of surfaces (normal).
Please see the supplementary material for additional results and analysis.

s

E

(a)
Figure 2: Segmentation examples (from top to bottom) on NYU RGB-D database (NYUD?2).
(a) Input Color image (b) Input Depth image (c) Ground truth (d) JCSA-RM (our proposed)
(e) UCM-RGBD [25] (f) GBS-CDN [9] (g) SP [31] and (h) GCF [8].

Comparing JCSA with JCSA-RM (Table 2), we can decompose the contributions of
clustering and region merging in JCSA-RM. We see that region merging improves clustering
output from 0.45 to 0.58 (28.88%) in GTRC. We believe that JCSA-RM can be improved
and extended further in the following ways:
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e Including a pre-processing stage, which is necessary because the shape features are
often computed inaccurately due to noise and quantization [5]. Moreover, we observed
significant noise in the color images which are captured in the low light condition. A
method like Scene-SIRFS [5] can be used for pre-processing purpose.

e Enhancing the clustering method by adding contour information [2] efficiently. Addi-
tionally, we may consider spatially constrained model such as [20].

e Enhancing the region merging method with color information. To this aim, we can
exploit the estimated reflectance information (using [5]), such that the varying illumi-
nation is discounted.

In order to conduct the experiments we used a 64 bit machine with Intel Xenon CPU
and 16 GB RAM. The JCSA-RM method is implemented in MATLAB, which on average
takes 38 seconds, where 31 seconds for the clustering and 7 seconds for region merging. In
contrast, UCM-RGBD (MATLAB and C++) takes 110 seconds. Therefore, JCSA-RM is /3
times faster’ than UCM-RGBD. Moreover, we believe that implementing JCSA-RM in C++
will significantly reduce the computation time.

To further analyze the computation time of JCSA-RM, we run it for different image
scales. Table 3 presents relevant information from which we see that the reduction rate of
JCSA computation time (in sec) w.r.t. different scales is approximately equivalent to the
reduction rate of the number of pixels.

Scale 1 1/2 1/4 1/8
Num. pixels 239k | 60k | 15k | 4k
JCSA (req. time in sec) | 132 31 8 1.5
RM (req. time in sec) 42 7 1.4 0.33

Table 3: Computation time of JCSA-RM w.r.t. different image scales.
4 Conclusion

We propose an unsupervised indoor RGB-D scene segmentation method. Our method is
based on a statistical image generation model, which provides a theoretical basis for fus-
ing different cues (e.g. color and depth) of an image. In order to cluster w.r.t. the image
model, we developed an efficient joint color-spatial-axial clustering method based on Breg-
man Divergence. Additionally, we propose a region merging method that exploits the planar
statistics of the image regions. We evaluate the proposed method with a benchmark RGB-D
image database and using widely accepted evaluation metrics. Results show that our method
is competitive w.r.t. the state of the art and opens interesting perspectives for fusing color
and geometry. We foresee several possible extensions of our method: more complex image
model and clustering with additional features, region merging with additional hypothesis
based on color. Moreover, we believe that the methodology proposed in this paper is equally
applicable and extendable for other complex tasks, such as joint image-speech data analysis.
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3To perform a fair comparison, we conducted this experiment with half scaled image. This is due to the fact that
the computational resource did not support to run UCM-RGBD for the full scale image.
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