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Abstract

In this work we introduce a new approach to co-classification, i.e. the task of jointly
classifying multiple, otherwise independent, data samples. The method we present,
named CoConut, is based on the idea of adding a regularizer in the label space to en-
code certain priors on the resulting labelings. A regularizer that encourages labelings
that are smooth across the test set, for instance, can be seen as a test-time variant of the
cluster assumption, which has been proven useful at training time in semi-supervised
learning. A regularizer that introduces a preference for certain class proportions can be
regarded as a prior distribution on the class labels. CoConut can build on existing classi-
fiers without making any assumptions on how they were obtained and without the need
to re-train them. The use of a regularizer adds a new level of flexibility. It allows the in-
tegration of potentially new information at test time, even in other modalities than what
the classifiers were trained on. We evaluate our framework on six datasets, reporting a
clear performance gain in classification accuracy compared to the standard classification
setup that predicts labels for each test sample separately.

1 Introduction
Classification is one of the most fundamental and best understood machine learning prob-
lems. Different scenarios, such as semi-supervised, multiple-instance, or active learning,
differ strongly in their training procedure. They agree, however, in their prediction step at
test time: each test sample is assigned a label individually. However, in many real-world the
samples to be classified occur in batches, such as words in a document, images in a photo
collection, or stocks in a portfolio.

Exploiting the fact that multiple test samples are available at the same time should make
it possible to achieve increased classification accuracy. Consider the situation of a linear
classifier, which is efficiently trainable and exhibits good generalization capabilities but has
a decision hypersurface that might not perfectly reflect the class boundaries in feature space.
Given sufficiently many test samples it should be possible to modulate the classifier’s deci-
sion boundary, for example, based on the cluster assumption, which states that class decision
boundaries typically do not cross high density regions (see Figure 1 for an illustration).

Despite its potential, the task of co-classification, i.e. classifying a set of points jointly,
has received little attention in the literature. In this work, we introduce CoConut, a method
for co-classification based on the established principle of regularized risk minimization. It
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(a) no cluster assumption (CA) (b) CA at training time (c) CA at test time

Figure 1: Schematic illustration of the effect of the cluster assumption. Left: supervised
training of a linear classifier with few training examples (bold circles): many mistakes oc-
cur at test time (red dots). Middle: imposing the cluster assumption during training adjusts
the decision boundary thereby reducing the number of errors. Right: adopting the cluster as-
sumption at test time allows non-linear corrections of the linear classifier decisions, resulting
in a further reduction of errors.

jointly labels all test points by minimizing a regularized risk functional that consists of a
per-sample loss and a regularizer that incorporates additional information in the output (la-
bel) space. The method is applicable to a wide range of classification problems, because it
requires only the output of a set of classifiers as input, but makes no assumption on how they
were trained. It is also efficient, as it requires no additional training step but only solves a
regularized risk functional using efficient energy minimization techniques.

CoConut is able to exploit information absent during classifier training but available at
test time. For instance, in robotics applications new sensors can be installed on a robot at the
time of its deployment. While the data modalities acquired through these sensors were not
present during training, it would still be beneficial if one could integrate them at operation
time. Additionally, in graph or network applications, structural relations between data points
are a natural source of information. For example, hyperlinks between webpages might indi-
cate that those webpages share a topic. Similarly, with relational data: collaborating authors
usually work in the same fields. Finally, having to train classifiers on imbalanced data is a
common phenomenon in many settings. Imposing a preference for a certain label distribu-
tion at test time can ameliorate the damage of biased training data, which is possible with
CoConut as well.

2 Regularized Co-Classification
We formalize the co-classification scenario in the following way. We are given a set of
(test) examples, X = {x1, . . . ,xn} from an input space X , and we want to predict labels
Y = {y1, . . . ,yn} from a label set Y = {1, . . . ,L}. For this task we have access to L fixed base
classifiers with prediction functions, f1, . . . , fL : X → R, where for any x ∈ X and l ∈ Y the
value fl(x) reflects a confidence that the sample x belongs to class l. The straight-forward
choice for labeling the test points is then to predict (greedily) the most confident label for
each sample, yi = argmaxl=1,...,L fl(xi).

We propose to compute a joint labeling y∗=(y∗1, . . . ,y
∗
n)∈Yn of the test points by solving

the following optimization problem:

y∗ = argmin
y∈Yn

−
L

∑
l=1

Jyi = lK fl(xi)+λΩ(y), (1)
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where Ω is a regularizer that penalizes undesirable label combinations and λ ∈ R+ is a
constant that controls the regularization strength. We present several possible regularizers
in Sections 2.2 and 2.3 that depend on the information available at test time. Note that
for λ → 0 we recover independent per-sample predictions, showing that per-example label
selection can be thought of as a special case of this framework.

Equation (1) resembles the expressions occurring in the classical framework of regular-
ized risk minimization [31]. The difference lies in the fact that we regularize in the output
space (the space of all labelings), not in the space of classifier parameters. Therefore, we call
the resulting approach Co-Classification with output space regularization (CoConut).

2.1 Theoretical Foundations
Statistical learning theory1 studies the task of choosing a particular prediction function out of
a (very large) set of hypotheses, using the information provided by a set of training examples.
A central result is the following theorem:

Theorem 1 ([31]) Let H be a set containing |H| hypotheses. Then the following inequality
holds with probability at least 1−δ , uniformly for all h ∈H:

err(h)≤ êrr(h)+

√
log |H|+ log 1

δ

2n
, (2)

where err(h) is the expected error of the classifier h on future data, and êrr(h) is the empirical
error of the classifier h on the training set of size n.

The theorem links the error on future data and the error on the training set. One conse-
quence of the theorem is the consistency of empirical risk minimization: if log |H| is small
compared to the number of training examples, it is a good learning strategy to simply find
the classifier that minimizes the training error [30]. Otherwise, this strategy might overfit: it
might choose a classifier that works well on the training set, but not on the test set.

Co-classification fits the above framework when we interpret the classifier predictions
fl(x1), . . . , fl(xn) as observed but potentially noisy labels. A joint labeling y = (y1, . . . ,yn)
corresponds to a discrete function, g : X → Y with g(xi) = yi. Since all valid labeling are
possible a priori, the hypothesis class is the set of all such functions, G = Yn. Empirical risk
minimization requires solving the following optimization problem

min
g∈G
L(g) with L(g) =

n

∑
i=1

`i(g(xi)), (3)

where `i(l) = − fl(xi) is the loss of predicting the label y for the sample xi. Unfortunately,
for n (test) examples the hypothesis set G contains |Y|n elements, so log |G| = O(n), and
the second term in the bound (2) cannot be neglected. Consequently, per-sample greedy
prediction as in Equation (3) might overfit.

CoConut resolves the above situation by building on the concept of regularization. In-
stead of the hypothesis set G above, we search only labeling from a smaller set, GC = {g ∈
G : Ω(g) ≤C} where Ω is a measure of regularity, and C is a task-dependent threshold. In
the case where |GC| � |G|, the bound (2) becomes tighter, and we can expect higher overall

1For simplicity of notation, we discuss the theory only for the case of binary classification, i.e. Y = {±1}.

Citation
Citation
{Vapnik} 1998

Citation
Citation
{Vapnik} 1998

Citation
Citation
{Valiant} 1984



4 KHAMIS, LAMPERT: CO-CLASSIFICATION WITH OUTPUT SPACE REGULARIZATION

classification accuracy when searching only for labelings that lie in the reduced hypothesis
space.

In practice, solving Equation (3) over the reduced set GC for fixed C results in a hard
combinatoric optimization problem. We overcome this by reformulating the problem into
one of regularized risk minimization. We first observe that finding ming∈GC L(g) is equivalent
to the following optimization problem with side constraints,

min
g∈G
L(g) subject to g ∈ GC, (4)

which itself is equivalent to the unconstrained

min
g∈G

max
λ∈R+

L(g)+λ (Ω(g)−C) (5)

where λ is a Lagrangian multiplier of the constraint (since g ∈ GC ⇔ Ω(g) ≤C). Conse-
quently, there is a value λ ∗ such that the same solution for g as of Eq. (4) is given by

min
g∈G

L(g)+λ
∗
Ω(g)+ const. (6)

This is equivalent to the optimization problem (1) we propose to solve for CoConut. Note
that the dependence of λ ∗ on C is non-trivial and in general non-explicit. However, when C
ranges over all of R, so will λ ∗, so it does not matter if we first perform model selection and
then convert to the form of Equation (6), or vice versa.

2.2 Cluster Assumption
In our choice of regularizer we encode the inductive bias we have about the problem. Often
this would be an assumption that the true labels vary smoothly with respect to the inputs,
which means we should prefer smooth hypotheses g ∈ G. The smoothness of a function
is typically measured by (the integral over) its gradient norm. Since the elements of G are
discrete functions, we use the following discrete analog of the gradient norm [33]. For any
point xi, let Ni ⊂ X be the set of neighbors that are similar to xi. Let wi j denote the a measure
of the similarity between two neighbors xi and x j. For any x j ∈ Ni the slope of g between
xi and x j is wi jδi j(g), where δi j(g) := Jg(xi) 6= g(x j)K indicates whether g changes value
between xi and x j

2. Averaging this quantity across all neighbors and all points, we obtain a
measure for the average discontinuity (lack of smoothness) of any labeling function g ∈ G:

ΩS(g) =
1
n

n

∑
i=1

1
|Ni| ∑

x j∈Ni

wi jδi j(g). (7)

Note that ΩS coincides with a degree-normalized discrete Laplacian [1], defined by the
weighted neighborhood graph of the samples in X . The measure of smoothness it provides
is data-dependent: label changes in regions of high data density (neighboring points are sim-
ilar to each other) are penalized strongly, whereas regions of low data density (neighboring
points are less similar) are less constrained.

2The name slope stems from the case where wi j =
1

di j
with di j the distance between xi and x j . In this case, wi jδi j

is the geometric slope of the piecewise linear extension of g along the line connecting xi with x j .
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Neighborhood Construction. We highlight three possible neighborhood system options:
a) a k-NN graph with respect to the original feature representation, b) a k-NN graph with re-
spect to an additional feature representation or data modality available only at test time, and
c) a graph with neighborhood relations predetermined by side information. In all three situ-
ations, we define the weights using the radial basis function wi j = exp(− 1

σ2 d2
i j) commonly

used for graph Laplacians. where d2
i j is the distance between i-th and the j-th samples.

For the cases a) and c), we use d2
i j = d2

X (xi,x j), i.e. we obtain the similarity between sam-
ples from their regular feature space distance. In case b), we assume that more information
about the test examples is available than was the case at training time. We formalize this by
assuming additional feature vectors, zi ∈ Z , for the test samples and define the distance be-
tween samples from the distance in the combined feature space d2

i j = d2
X (xi,x j)+d2

Z(zi,z j).

Optimization. From Equations (7) and Equation (1) we obtain a discrete optimization
problem for predicting the optimal labeling, y∗:

y∗ = argmin
y∈Yn

n

∑
i=1

`i(yi)+λ

n

∑
i=1

1
|Ni| ∑

x j∈Ni

wi jJyi 6= y jK (8)

where we have absorbed the factor 1
n of ΩS into the constant λ . Optimization problems of

the same structure as Equation (8) are known well in area of computer vision as problem of
energy minimization. To solve them, we can rely on well-developed theoretical as well as al-
gorithmic results. For L= 2, the objective function is submodular [13]. We can find the exact
global minimizer using the mincut/maxflow duality [8] or LP relaxations [5]. For L > 2, the
objective (8) coincides with the energy function of a generalized Potts model [32]. Convex
relaxations or iterative techniques like α-expansion [4] find solutions that are guaranteed to
be constant factor approximation of the optimum, but in practice are much better [11, 27].

Complexity. The regularizer ΩS has been analyzed for binary labeling problem in the ma-
chine learning literature. In particular, it is proved in [22] that the size of the hypothesis set
GC is bounded by the value ∑

k
d=0
(n

d

)
, where k is a constant depending on C and the eigenval-

ues of the graph Laplacian of the neighborhood graph. For small enough k this expression is
exponentially smaller than 2n (which is its value for k = n and the size of G in this case).

2.3 Class Label Distribution
A regularizer can also encode a preference for a certain class label distribution at test time.
This can counter the effect of the bias introduced by training with imbalanced class distri-
butions. We assume that the target (expected) class label proportion for class l is Ql , where
∑

L
l=1 Ql = 1. We define a measure for the disparity between the class label proportion pl(g)

induced by labeling function g and the target proportion for each class l:

ΩD(g) =
L

∑
l=1
|pl(g)−Ql | (9)

where pl(g) = 1
n ∑

n
i=1 Jg(xi) = lK are the label proportions the hypothesis g. The regular-

izer ΩD penalizes the deviation from the target distribution, and this penalty is linear in the
amount of deviation.
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Optimization. We express the regularizer ΩD in term of the labeling y and insert it into
the CoConut objective. This results in the following discrete optimization problem.

y∗ = argmin
y∈Yn

n

∑
i=1

`i(yi) +
L

∑
l=1

ξl (pl(g)−Ql) , (10)

where ξ1, . . . ,ξL are the Lagrangian multipliers of the label proportion constraints of the L
classes. Model selection over all these parameters would be impractical. Instead, we infer
their values during the optimization using Lagrangian Relaxation [2] as in [17] At each step,
we alternatingly update the two variable sets y and ξ . To update y, we solve Equation (10)
with fixed ξ , which corresponds to a per-variable minimization of the modified loss terms
`′i(l) =− fl(xi)+

1
n ξl . To update ξ we take a subgradient step with step size αt at iteration t.

Given initial values for ξl , the minimization proceeds as follows:

• With fixed ξl , minimize loss terms `′i
• With fixed y, update ξl ← ξl +αt(pl(y)−Ql)

It is also possible to combine the two regularizers, ΩD and ΩS. In this case, the update
step for y requires solving Equation (8) with the modified loss terms. The second step re-
mains as it is. In this case the efficiency of the algorithm can be significantly improved by
warmstarting the optimization for y with the solution from the previous iteration [12].

Complexity. The power of the regularizer ΩD depends on the label proportions. For ex-
ample, in the binary situation the size of the hypothesis space {g ∈ G : ΩD(g) = 0} is

( n
Q1n

)
.

This is significantly smaller than 2n, if Q1� Q2 or Q2� Q1. Consequently, we expect the
effect of label proportions regularizer to be most effective if the desired class distribution is
imbalanced or in combination with another regularizer, such as ΩS.

3 Related Work
To our knowledge, we are the first to propose a method for co-classification in a regularized
risk minimization framework. However, the concrete techniques of graph-based regulariza-
tion that we rely on have previously found application in machine learning, in particular
transductive and semi-supervised learning [34]. In transductive learning, the test samples
are known at training time. This allows integrating them in a neighborhood graph together
with the training samples. Label information is propagated in this joint graph [3, 35]. We,
on the other hand, do not assume that we have access to the test samples at training time.
Semi-supervised learning typically learns a parametric classifier, but does so while taking the
location of unlabeled examples into account. The cluster assumption, that we also rely on,
is the most common method for this: a prediction function is preferable if it assigns similar
values to samples that have a small distance from each other in feature space [1]. However,
at test time predictions are made individually without further regularization of the outputs.

It is possible to combine multiple data modalities within a semi-supervised learning
framework, but all of them must be present already at training time [26]. Christoudias et
al. [6] recently proposed a technique for handling new modalities at test time. They train a
classifier on the testing data to “hallucinate” the missing modality on the training data, and
then train a classifier on both modalities. CoConut does not require any additional training
and avoids estimating the missing modality on the training data.
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Making joint predictions across multiple objects is a core component of structured pre-
diction techniques, like CRFs [14] and structured SVMs [29]. However, such approaches
typically model a set of objects as one example, and training then requires multiple sets of
objects. A graph of fixed structure is typically required, whereas for CoConut we form a
data-dependent graph at test time. Collective classification takes a similar route by using
known relational properties between objects. Taskar et al. [28] models the sample relations
using a Markov network trained using structured prediction. Lu and Getoor [19] train a
classifier that makes per-sample prediction, but augment it with another classifier trained
on additional neighborhood features. Our approach, on the other hand, does not require
additional training and can complement the accuracy of pre-trained classifiers at little cost.

CoConut combines supervised inductive classifiers with an unsupervised similarity mea-
sure. This aspect resembles earlier work on combining supervised and unsupervised learn-
ing techniques. For example, Gao et al. [9] combines classifiers and clustering methods, by
clustering the test set and forming a majority vote of the classifier outputs over the samples
within each cluster. However, in the case where samples are erroneously clustered together
with samples of a different class, errors are unavoidable. The regularization-based approach
we take avoids hard decisions. It allows any incorrect neighbor relation to be overruled by
confident classifiers scores, and vice versa.

4 Experiments
We evaluated CoConut on six different datasets: four image and two network datasets. For
all datasets we take on the features provided by the original authors. The Robotics dataset
consists of low-resolution (webcam) and high-resolution (DSLR) images. We use the former
as original representation for classifier training and the latter as an additional representation
available only at test time. For the other three image datasets, Flowers, Birds, and Butterflies,
we follow the same setup using shape and texture features as the original modalities and
color features as the additional modality. For the network data, Cora and Citeseer, the base
representations are bag-of-word histograms [25], and additionally we impose a structural link
between two documents whenever one of them cites the other. All features are reduced in
dimension using Kernel PCA [24] to the dimensionality that minimizes the nearest neighbor
error rate on the training set. We then train one-versus-rest linear SVMs for all classes using
liblinear [7] and use their outputs as confidence values. To find the nearest neighbors, we
compute the Euclidean distance matrices and normalize them to the [0,1] range.

Supervised classification techniques typically adjust their parameters using a separate
validation set. In the co-classification setup that we work in, such a validation set is not
readily available, so for determining the single parameter we have, λ , we use part of the
training set, essentially simulating co-classification on this set of examples instead of the
test set. Clearly, this strategy is not ideal, since the output of the classifiers on the training
set is not fully representative of their output on a test set, and in the case where additional
modalities are available only at test time, we cannot integrate them at training time already.
Nevertheless, we found the adopted model selection approach to work well in practice.

4.1 Results
We randomly split each dataset into equal training and test parts. On the former part we
train linear classifiers in a standard supervised setting. We use their output for independent
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Accuracy/Dataset Robotics Flowers Birds Butterflies
Baseline (transductive) 5.51 ± 0.00 5.88 ± 0.00 23.33 ± 1.83 21.75 ± 0.00
Baseline (per-sample) 63.86 ± 0.41 72.82 ± 0.23 54.40 ± 0.34 53.90 ± 0.24
CoConut (unseen) 64.56 ± 0.48 74.88 ± 0.23 54.87 ± 0.35 54.03 ± 0.27
CoConut (structural) – – – –
CoConut (proportions) 64.76 ± 0.40 75.15 ± 0.22 54.53 ± 0.29 54.42 ± 0.34
Accuracy/Dataset Cora Citeseer
Baseline (transductive) 30.23 ± 0.00 20.18 ± 0.00
Baseline (per-sample) 69.05 ± 0.23 66.74 ± 0.18
CoConut (unseen) – –
CoConut (structural) 76.30 ± 0.47 69.57 ± 0.22
CoConut (proportions) 77.58 ± 0.33 68.31 ± 0.18

Table 1: Classification accuracies on the six datasets (mean and standard error over five
random splits). Baseline (transductive): label propagation across neighbor links. Baseline
(per sample): independent classification. CoConut (unseen): with the cluster assumption
on the unseen modality, CoConut (proportions): with both the cluster assumption and label
proportions information, CoConut (structural): with the cluster assumption on structural
links.

per-sample decisions, that serve as baseline, and as inputs to CoConut, which we test with
the cluster assumption regularizer, based on the similarity of samples with respect to the new
data modalities (for the image datasets) and from the structural relations (for the network
datasets). We also evaluate CoConut with the label distribution prior on all six datasets.
As a second baseline, we implemented label propagation (a transductive classifier) along a
neighborhood graph constructed in the same way as for CoConut, but on all data samples,
train and test, not just the test part.

Table 1 reports the results as mean and standard error of the mean over five random
splits. A first observation is that the transductive classifier achieves clearly worse results
than the other methods, even though it assumes that the training examples are available at
test time. Presumably this is because it does not have the ability to distinguish between
relevant and irrelevant dimensions in the feature space, while the discriminatively trained
inductive classifiers do. One also sees that CoConut with the cluster assumption improves
the classification accuracy consistently for all datasets. This is noteworthy, considering that
the classifiers are not retrained, but only their output confidences are modulated using the
cluster assumption at test time. Imposing a preference for the label distribution yields an
even larger improvement across all datasets, except for Birds and Citeseer where CoConut
with just the cluster assumption is the better performer.

We further evaluate the improvement with respect to the amount of test data available.
The intuition behind this is that, e.g., the cluster assumption can be expected to only be
helpful if sufficiently many data points are available. Figures 2 shows the average results
when splitting on the test set in non-overlapping groups of 20%, 25%, 33%, 50%, and 100%
of test examples, and performing co-classification on each of the groups independently. The
results confirm our hypothesis: for very small test sets, imposing a regularizer based on the
cluster assumption can in some cases be disadvantageous. One possible reason for this is
that the few data points are not sufficient to reliably estimate the cluster structure of the
data. This effect, however, depends on the quality of the distance function. This is visible
in the results for the Robotics and Flowers datasets, where the additional modality improves
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Figure 2: Classification accuracy (mean accuracy and standard deviation of the mean) of
CoConut versus the accuracy of per sample independent prediction (baseline). The results for
all datasets are reported using the Cluster Assumption (CA) and also using it in association
with the Label Proportion information (LP). The right-most values in each figure corresponds
to the results in Table 1. The rest of the values indicate problems made artificially harder by
reducing the amount of test data available for co-classification.

the classification performance even for small test sets. This is even more apparent for the
Cora and Citeseer datasets, where the relations are based on structural links. Similarly, the
label distribution prior consistently improved the results across all test sizes. It was however
slightly damaging to the results on Birds and Citeseer, where the cluster assumption was
superior in isolation, while still clearly outperforming the baseline.

5 Summary

We presented CoConut, a technique for classifying multiple samples jointly. It combines
pre-trained classifiers with a regularizer to impose favorable priors on the output space. Our
method is general and independent of the choice of the classifiers. It is also efficient since it
does not re-train those classifiers and only optimizes a regularized risk functional using scal-
able and efficient techniques. We can integrate additional information that was not present or
useful at training time, such as measurement from additional sensors on a robot or timestamp
and GPS information from a camera. We performed experiments on six different datasets in
three different scenarios to evaluate CoConut, achieving consistent improvements over the
baselines. In the future we plan to investigate imposing regularization on subsets of samples,
whether given or obtained through clustering, as well as further applications of our model.
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