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Abstract

In this paper, a Learn++ (LPP) tracker is proposed to effityeselect specific clas-
sifiers for robust and long-term object tracking. In cortttagprevious online methods,
LPP tracker dynamically maintains a set of basic classifidigh are trained sequen-
tially without accessing original data but preserving thevipusly acquired knowledge.
The different subsets of basic classifiers can be specifiedlve different sub-problems
occurred in a non-stationary environment. Thus, an optafeaisifier can be approximat-
ed in an active subspace spanned by selected adaptive zssiifiers. As a result, LPP
tracker can address the “concept drift”, by automaticatljsting the active subset and
searching the optimal classifier in an active subspace spoythe subset according to
the distribution of the samples and recent performance eiixgntal results show that
LPP tracker yields state-of-the-art performance undeéouarchallenging environmental
conditions and, especially, can overcome several chakesgnultaneously.

1 Introduction

Tracking-by-detection approaches [, 7, 19, 20], which treat the tracking problem as a
classification task, have recently been proposed to ovezclifficulties in the non-stationary
environment (NSE)J2]. To improve the flexibility of the model, strategies for feee and
sample selection are used in a large number of methods. Tgsical discriminative fea-
ture selection methods were proposedihdnd [19]. Semi-supervised learnin@] and
multiple instance learningd] were adopted for sample selection. AdaBo@twas used
for both feature and sample selection. Compressive sefi@fignd sparse representation
[16] methods are also explored to build appearance models fjeciivacking. Moreover,
to avoid wrong updates, multi-models, [8, 14, 20, 23] which have more diversities were
employed for visual tracking. Large scale experiments wahous evaluation criteria to
gauge the state-of-the-art are giveni][

Most machine learning algorithms can learn from data thatassumed to be drawn
from a fixed but unknown distribution. However, this assuomptannot be valid in case of
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(b)

Figure 1: (a) Assuming that the best classifiers for the previrames are available, which
classifiers should be used in the current frame (bottom)?ght, fs or their combination?
Also, when the target moves out of view then comes back, wtlizssifiers are the best to
be used? This paper tries to solve these problems in objmititig. (b) Framework of SR.

tracking problem. Traditional machine learning methoddiapl to the tracking problem will
fail when there is a “concept drift” in the NSE. That is beaatlse function learnt on a fixed
sample set previously collected may not reflect the curreté ©f nature due to a change
in the underlying environmentp]. In object tracking, the distribution of samples changes
a lot due to the deformation of the object and the change ob#ukground. Especially
during the transition between different difficulties (spitwblems), such as from occlusion
to varying viewpoints, the samples in the two differentaitons differ significantly. Thus,
the separability of features and classifiers used in previames will decrease in the new
situation. Ifx are the samples ande {1,—1} are classes, then the “concept drift” can be
defined as any scenarios where the posterior probabilityggsover time:

KL(p""(y%), p'(y[X)) < Tg 1)

wheret is the time,n is the time step of driftry is a small value and the Kullback-Leibler
(KL) divergence describes the dissimilarity of the two disttiins.

Learn++ [L8] is a new type of machine learning method to learn additiamfarmation
from new data without retrieving the original samples. 16][ Learn++ is used to solve the
problems in NSE, however, their method does not have a meshda make the classifier
members learn from the new samples, exit from the activestatvel revive from the ensem-
ble, which are important for both the speed and the robustofthe model. In this paper,
by enabling and designing these critical and flexible fuonj we propose a fundamentally
new Learn++ method for robust and long-term object trackiragned as LPP tracker. LPP
tracker dynamically maintains a set of basic classiffers Q¢ which are trained sequential-
ly without accessing original data but preserving the presly acquired knowledge. The
“concept drift” problems can be solved by adaptively sétecthe most suitable classifiers
named as active subs& C Q! as shown in Fig.1(a). These basic classifiers are inde-
pendent from each other and used to address different siidepns. For each frame, the
democratic mechanism can be adopted, where all classifietBdscompete with each other
to be added into an active subset to suit the present enveonriNext, the optimal classifier
f' in the present environment can be fast searched in a funsgiace linearly spanned by
these basic classifiers in the active subset.

As far as we know, LPP tracker is the first tracking method thedigns an explicit
model for each sub-problem and the models can be autonataddred according to the
environment. As aresult, LPP tracker can address varicursc&pt drift” problems appeared
in one video simultaneously. The rest of the paper is orgahas follows. A fast and
brief descriptor for image patches is introduced in Secfio8ection 3 details the proposed
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Learn++ based method for visual tracking. Experimentalltesre reported and analyzed
in Section 4. Finally, conclusions are drawn in Section 5.

2 Structural Representation for Image Patches

A fast structural representation (SR) is introduced toesent an image patch as shown in
Fig. 1(b). SR has a three-level hierarchy: HO-virtual stage cériittg, H1-stage of random
projection, and H2-stage of encoding. The advantage of $Raisthe optimal projections
and filters can be decided using selecting the third-leveésdpy our proposed classifiers.

~ HO: filtering. Given a patcte € R*J, a set of rectangular smoothing filtefhi.; €
R*),1<i<1,1<j<J} aredefined, for which all entries of each filteg j equal /(i x j).
In total, there aré x J filters, each of which is convolved with the entire patch aratipces
| x J values. So, the dimensiow = (1J)? of the original featur& < RV is very high and
much information is redundant.

H1: random projection. Next, a sparse random matrix is used for dimensionalitycedu
tion, which is defined asP(i, j) = 1 with the probability ¥2s, P(i, j) = —1 with the prob-
ability 1/2sandP(i, j) = 0 with the probability - 1/s, wherep is the probability. In L],
Achlioptas pointed out that this matrix with= 2 or 3 satisfies the Johnson-Lindenstaus:
lemma. Compressive sensing theory ensures that the edriedtures preserve almost all
the information of the original image patch. In this papeg,sets=ny /4. Thus, the value
Vk € R projected by each row of the random matrix ig:= P(k,-)V. For patches with a
different sizez* € R"*J", the number of rectangular features will be different. latfave
need not to resize the patch. Applying a sdalg(l*J*) to the locations of elements W*
will be feasible to realize scale invariance. For each vajyéts meangy and variancesy
of positive samples will be computed when its correspondlagsifier is trained. Thus, for
each projected valug, a binary feature can be defined &g:= " | v € [k — Ok, Uk + Ok] |,
wherel | | is the indicative function.

H2: encoding. The third level is constructed similarly as FeftV], in which a feature
was calculated by comparing two randomly selected pixeks patch. However, directly
comparing two pixels is very sensitive to noise, especialtgn the two pixels are located
around an edge. Normally, to eliminate this drawback, fliill be used firstly. Instead
of comparing the pixels, the binary featuygcan be considered as basic cues. Each Fel
consists of a set of binaries, and in this paper, the sizesodein,, is set to 7. Thus, the node
of the deepest level in the hierarchy is definedBs: zﬂbzo 2b,. Moreover, if the size of a
filter is fixed, the number of nonzero entries of random prijeds set to two, and the two
weights are also opposite numbers, then SR will become #ssichl framework of Fern.

3 Learn++ for Solving the Problem of “Concept Drift”

The motion modep(a'|al~1), i.e., Optical Flow (OP)15], reflects the motion characteristic
of the target by predicting the staéébased on the previous state!. If p(aljal~t) > 1,
thena' is a valid result no matter whether “concept drift” occursnat. The P-N con-
straints [L1], p(a'|fi), were proposed to estimate the confidence of the clasdifienf
p(a'|fi) > (i) wheref; € Q!, the outcome of classifief; is validated. This triggers the
application of the P-N constraints that exploit the struetof the data. From the manifold
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perspective, P-N constraints maintain a purified sub-no&hfbr positive and negative sam-
ples. Ifp(a'| QL) > 12, wherep(a!|Q)) = max p(a|fi), there is no occurrence of drifting.

3.1 Obijective function

AssumeQtJ QL = QL nl = |QL| andnf, = |Q}|, where| - | denotes the number of members
of the set.W! denotes the historical welghts of all existifige QL. In framet, X andy!
denote the structural representation and the label of imatyhz, respectively. Each entry
x}(') contains thexg number of node$B; j : j = 1,---,ng}, for the classifierf;. Also, Xtis
the set of collected samples anid= |X!| . The distribution of sample®' will be calculated
according to the results of old classifiers and used to desthie importance of samples.
For simplicity, we definefj(xX) = fi(X (i), W = (W}, -~ W, ) and QL = (f1,---, fn,)T. Our
goal is to find an optimal classifi€rwith most discriminative features in the function space
! linearly spanned by a set of classifie®$ which are trained in previous frames, where
H' = {ht:ht =wQL}. Moreover, to improve the efficiency of the system, the wesigh are
required to be sparse so that most basic classifiers are ediruthe current frame. Thus, in
theory, the objective function is defined as:

Wt:argTﬁinZL(ht(ﬁ),y})wL)\||vth0 2)

whereL andA are the loss function and regularization parameter, reéispgc Therefore,
we obtain the hypothesis as:

f! =w'Q} 3)
The optimal classifief' can be used to detect the object in the current frame (newamnvi
ment). The final classification for each image patcis achieved asyl = sign(f'(x)).

Eqgn. 2 cannot be optimized directly, due to that the true lajjedf image patchx

is unknown. However, based on the assumption of the “condeft (Eqn. 1), we can
approximate to the optimal solution using the classifieas tfave yielded good performance
in recentn frames or in the same situations by Learn++. In the followhnmy to train basic
classifiersf; and how to approximate the optimal classiffewill be introduced.

3.2 Basic classifier

The Naive Bayesian is used as the basic classifier in our peabgystem. Thud; can be
defined by posterior probabilities by combining nodes (assuming an uniform pripfy)):

fi(x)) = arg rr}am(ylm () (4)

wherep(y|x (i)) O |‘| p(x (i, j)|y). Therefore, for eaclf, the posterior probabilities will be
trained and updated to adapt to the changes of the envirdrandrthe object by calculating
and updating the class conditional distributigiiB; j|y) of each Fern.

Training. The parameters of SR for each classifiewill be generated randomly. Once
generated, these parameters will be fixed during the whiglgplan of the classifief;. At
framet, based on a set! with all positive samples and 2000 negative samples in th¥'se
and distributiorD!, we can define two quantities which are used to train or uptassifiers:
N(y,Bij) = 3y D{F [X(i. ) = Bij|F [y = y] andN'(y) = 3, DIT |y} = y|, wherex; € XI.
Other negative samples are used to evaluate the classifierefbre1»(i) = may; p(at|f),
whereal denotes the corresponding states of negative samipteX!/X!. Thus, the class
conditional distributions fof; are calculated by:



FENG ZHENG, LING SHAO, JAMES BROWNJOHN AND VITOMIR RACIC: P TRACKER 5

1+N(y,Bi ;)
1+ N(y)

P'(Bijly) = (5)
whereN(y. B ) = N'(y. By ) andN(y) = Ni(y).

Learning. If f; has been used in frame The setX! can be used to update the class
conditional distributiorp' (B; j|y) so as to adapt to the changes by:

N(Y,Bij) < N(y,Bij) -+ N'(y,Bij)iN(y) < N(y) +N'(y) (6)

By recalculating Egn5, the updated distributions are obtained.

3.3 Tracking by detection

At the beginning(t = 0), random Fernd needs to be trained according to the selecte
target in the first frame and we can directly jump to the sangpléection step. At frame
t(t > 0), the following steps which are similar to most tracking-dstection approaches are
processed sequentially. First, by applying the slidingdein method to the current frame,
the classifier in the active subset is used to classify eatthpd this frame. Second, the
OP method is used to compare the two targets in the two sueedsames. Third, the
probabilitiesp(al|a—!) and p(a'|Q!) are calculated. Fourth, all states classified as positiv
samples by! will be fused and the optimal stagééwith the highest confidence in the current
frame will be obtained. Finally, the classifiers will be upethaccording to the present
performance. The entire procedure is organized as in Algori.

Algorithm 1 LPP tracker
Initialization Define a target in the first frame and build a classifier
Repeatt=1,---

(0) Capture a new framéf no frame:Exit.

(1) Run each classifief; € QY of the active subset on the present frame.
(2) Combine the result according to Eqn3 and obtain the best resulta®.
(3) Ifat is valid target: Compute the probabilitigga |a;_1) andp(a|fi).
(4) If p(a'jal~1) > 11: Collect and weight samples',

(5) If p(a'|Q}) > 12: Update the old classifier§,
(6) Else If p(a'|Q}) > 12: Revive a classifier fron®{;
(@) Else: Train a new classifiefy ;.
End
End

(8) Resampling and evaluate the classifiers.
Return Update the classifigf ! and set the stai@, Go To (0).

3.4 Collecting and weighting samples

If p(at|a=?t) > 1y is satisfied, it means that the tracked target is valid andbeaused to
update the set of classifiers. Otherwise, when no valid tasge the current frame, we can
directly jump to the classifier sampling step.

Collecting. The sample seX' is constructed as follows: If the overlap af and &
exceeds (&, the patchg of stateal will be considered as the positive sample; otherwise
if the overlap ofa' anda] is lower than @, it is considered as the negative sample. Also
according to the fused resu#s 400 positive samples will be generated by the affine warpin
of the selected patc to increase the richness of positive samples.

Weighting. At the beginning(t = 0), the distribution of sampleB! used to train the
first classifier is set to be equal tgrd. If (t > 0), the distribution of patches in theh
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frame will be computed. Firstly, the current ensentblis evaluated on the new patché's
=i z"x I [sign(f(x)) # ¥t |. Secondly, sample weighB of X are defined by:

D} :{ Eta ggn(ft(x})):yt, (7)

1, otherwise

)

t
Finally, setD} < D}/zlnél D}. Normalizing the error weights by their sum then provides us
the updated penalty distribution. Samples of the new enwiientx{, which are not recog-
nized by the existing knowledge bafeare identified.

3.5 Sampling the classifiers

If the current active subset can deal with the changes, thimalclassifier in the next frame
has the same basic classifiers. To increase the adaptivitynéw samples will be learnt
by existing classifiers. For eadhe Q!, if p(a!|fi) > 12(i), then f; will be updated by the
samplesX! according to their distributlolt following Eqn.6. Otherwise, reviving the old
classifiers or training a new classifier will be considered.

Reviving. If p(al|Q}) < 1, andp(a‘|al~t) > 11, due to the “concept drift”, it means that
the current ensemble cannot deal with the changes. So, aetef Isasic classifiers need
to be built. New classifiers will be added into the ensembléhsd the optimal classifier
will be searched in a new set of classifiers. Firstly, all s classifiersf; € QL will be
used to check whether the current appearance can be reedgminot by old classifiers. If
a similar “concept drift” has occurred before, an old classican be revived. This proce-
dure is efficient to compute because no sliding window is ededf p(al| QL) > 12, where
p(a'|Ql) = max p(a!|fi), there exists one classifidy that can recognize the current state.
Thus, this classifief; will be revived directly without adding a new one. Otherwiaenew
classifier will be trained and added to the ensemble follgviagn.5.

Resampling.No matter whether the valid target has been detected in therddrame or
not, some classifiers killed before will be revived throulgé tesampling procedure accord-
ing to the historical weighté/'. This will increase the diversity and avoid the local optima
solution. The adaptive rejection sampling meth6jd¢ employed to realize this step.

Evaluating. For finding the optimal classifier for the next frame, evahaall classifiers
fi € QL on the new datX" is necessary Firstly, the error of eafke QL on weighting

samples is defined asf = 3, %, i DIF [ fi(x) #y|. Thus,gf < &' /(1—¢gl). & can be consid-
ered as the performance of the functronf IEontributes mostly to the error of the ensemble
classifierf!, & will be larger than others. Secondly, for incorporating fegformance on
recent frames, a sigmoidal error weight is definedyfen) = 1/(1+expA1m—Az)), {m=
0,---,nk+n—i}, whereAs, A, are two parameters, is the time step anis the index of the
function in the ensemble. Thus, the weights are normaliaebaty (m) < ¥ (m)/ s, ¥ (m)
(see Fig.2(a)). Finally, the error offi ¢ QL™ is weighted with respect to time so that re-
cent competence (error rate) is considered more heavilgdtegorizing knowledge. The
weighted errors are defined by:

nb+n—i

T H(rk4n—i-mem (®)
m=0

Thus, we calculate the classifier voting weights = log 1/3! and normalize therrw“rl =
wt/Siwt. The instant voting weights can be used to update the hislosieights accordlng
toW ! < (1— o)W + aw!, wherea is the updating rate and is set t@B8.
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David: TV, SV, OCC, DEF, MB, IPR, OPR  Couple: SV, DEF, FM, OPR, BC
CarScale: SV, OCC, FM, IPR, OPR Football: OCC, TPR, OPR, BC

FaceOce2: 1V, OCC, IPR, OPR Footballl: IPR, OPR, BC
o1 Jogging: OCC, DEF, OPR Dogl: SV, IPR, OPR
Jumping: MB, FM FaceOccl/ Fish: OCCAV
o Dudek: SV, OCC, DEF, FM, IPR, OPR, BC  Crossing: SV, DEF, FM, OPR, BC
unction Turns Doll: 1V, SV, OCC, PR, OPR Boy: SV, MB, FM, IPR, OPR

20

15 Mhyang: TV, DEF, OPR, BC Sing 1V, SV, 0CC, OPR
5 10 Time Steps Syivester: TV, IPR, OPR Walking: SV, OCC, DEF
0o CarDark: TV, BC David2: TPR, OPR

Figure 2: (a) Signoidal weights used in EqB. A1, A, andn are set to (b, 10 and 8,
respectively. (b) The details of test videos. IV-lllumiivet Variation; SV-Scale Variation;
OCC-Occlusion; DEF-Deformation; MB-Motion Blur; FM-Fastotion; IPR-In-Plane Ro-
tation; OPR-Out-of-Plane Rotation; BC-Background Cltgtte

Challenges| LPP | Struck | VTS IVT VTD MIL OAB Frag CT SemiT

\Y 0.932 | 0.860 | 0.957 | 0.900 | 0.888 | 0.569 | 0.697 | 0.565 | 0.704 | 0.463
OPR 0.858 | 0.775 | 0.754| 0.718 | 0.766 | 0.670 | 0.704 | 0.627 | 0.625 | 0.544
SV 0.928 | 0.816 | 0.763 | 0.779 | 0.771 | 0.769 | 0.793 | 0.609 | 0.805 | 0.449

OcCC 0.772 | 0.659 | 0.723 | 0.749 | 0.733 | 0.583 | 0.677 | 0.675| 0.608 | 0.519
DEF 0.871| 0.682 | 0.595| 0.674 | 0.6000 | 0.618 | 0.753 | 0.624 | 0.643 | 0.677

MB 0.919 | 0.776 | 0.726 | 0.513 | 0.710 | 0.847 | 0.487 | 0.549 | 0.614 | 0.293
FM 0.875| 0.856 | 0.546 | 0.459 | 0.547 | 0.767 | 0.579 | 0.713 | 0.571 | 0.448
IPR 0.861 | 0.867 | 0.869 | 0.819 | 0.885 | 0.778 | 0.672 | 0.622 | 0.659 | 0.489
BC 0.882 | 0.912 | 0.725| 0.769 | 0.709 | 0.714 | 0.697 | 0.661 | 0.594 | 0.609

Overall 0.844 | 0.817 | 0.736 | 0.734 | 0.720 | 0.669 | 0.664 | 0.658 | 0.605 | 0.552

Table 1: The precision rankings of 10 tracking methods odlehging sequences. Bold
numbers denote the best precision scores.

Optimal approximation. To balance the increase of the diversity of the ensemble ar
efficiency of the model, the following conditions will be cidered: (1) For anyi; € Q4+
with wi ™ < 13, the classifiers will be killed and moved @{**; (2) For anyf; € QL with
W't < 15, the classifiers will be deleted for ever. Because the sizeipt is much smaller
thanQL+?, the weightsv'+! are sparse. Therefore, the optimal approximation classi$ied
in the next frame will be defined byt™* = 5 i wi™f;.

4 Experiments

In our experimentsty, T, and 1z are set to /5, 09 and 005, respectively. The greyscale
images are taken as input in our experiments. LPP trackebaitompared with 9 state-of-
the-art methods, including IVTLE], VTD [13], VTS [14], MIL [ 4], OAB [8], SemiT [9],
Frag P], Struck [LO] and CT [R4], most of which were recently proposed. The 21 video:s
summarized in Fig.2(b) are used for testing. Our experiments follow the setimf1]
and the results of other methods come from this report as ®ealth sequence is repeated 5
times with different random seeds by LPP tracker, and theanedsults are reported. More
results are included as supplemental materikd compare with various methods, two types
of metric are used to evaluate the different methods. (1}éCéacation distance: following
[21], if the distance between the center of the tracked patchttemdenter of ground truth

IMore video results and code will be released on our websitps #/sites.google.com/site/Ipptracker.
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Figure 3: The success plots and AUC rankings of 10 trackinthaas on challenging se-
qguences.

is within 20 pixels, the estimated target is considered asect Thus, the precision can be
defined as the proportion of the correctly tracked framekédatal number of frames. The
precision rankings of the 10 methods on the 21 videos aragivEablel. (2) Bounding box
overlap: the success plot shows the ratios of successfueat the thresholds varying from
0to 1. The area under curve (AUC)]] of each success plot is used to rank the tracking
algorithms. Both success plots and AUC rankings are showigir8 and some screenshots
are shown in Fig4.

4.1 Comparison with state-of-the-art methods

Firstly, taking the sequencngerl (624 x 352) for example, CT, LPP tracker and Struck
take the average time per frame ofdf 55msand 209nsrespectively on a Dell M4600 (In-
tel Core 28GHz and 8G RAM). Thus, the LPP tracker can address moswedd problems

in real-time (more than 18 FPS). Secondly, from Tahl&PP tracker can achieve the best
performance among all the 10 methods on most of the chakei@ethe one hand, for chal-
lenges of out-of-plane rotation, scale variation, ocdosaind motion blur, LPP tracker has
a great advantage over the other methods. On the other larttdefother three challenges,
LPP tracker is not the best one but the score of precisioro&edbo the best one. The score
differences to the best one are less than 0.03. The overédrpence of LPP tracker on all
sequences is 0.844 and higher than that of the second mettuatt 8y 0.027. Thirdly, from
top left of Fig.3, we can see that LPP tracker is ranked as the second besttba all test-
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LPP

Figure 4: Screenshots of top 6 tracking methods (accordiddC rankings in the top left
plot of Fig. 3) on challenging sequences. In total, 11843 frames aredteste

Figure 5: Comparsion of tracking results on three more ehgihg sequences between LPP
tracker (Red) and Struck (Greenjnotorcross (top row), panda (middle row) andsheep
(bottom row) have 1800, 3000 and 2532 frames, respectively.

ing videos and outperforms other methods by at le&88 6xcept for Struck. It demonstrates
that our proposed LPP tracker is relatively robust to vagioliallenges. Also, LPP tracker
works much better than all other methods on the challengesdfision, out-of-plane rota-
tion and scale variation. Particularly for scale variatibRP tracker outperforms the second
best method by ®5. In addition, on the challenges including deformationfion blur and
illumination variation, LPP tracker performs closely te thest method.

In total, LPP tracker gains six firsts, two seconds and onttiday the precision ranking,
and it gains three firsts, three seconds and two fourths bjtlie ranking. The differences
between the two rankings are on deformation, motion blurfastimotion. That is because
LPP tracker can build a new classifier for one part of the dhjden there are some large
deformations in the remaining part in these challengesrevtie object has been tracked by
LPP tracker but the score of overlap is relatively low.

4.2 More analysis of the LPP tracker

There are two parameters of motion constraitandt, to guide the learning of LPP track-
er. In this section, when we investigate one parametery pmameters will be set to default
(same values for all videos). In Fig(b) and (c), the overall performance on all the videos
vs. the different settings for the two parameters are giwdi.can see that the parameter
71 achieves the best performance arouriéb@vhile the parametear, achieves the best per-
formance around.9. If the two parameters are set too small, the model will bezmore
flexible but less stable. More erroneous information willdsieled into the model and the
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Figure 6: (a) The weights for the optimal classifier(b) The AUC performance vs. param-
etert;. (c) The AUC performance vs. parametgr

performance will deteriorate. However, if the two paramete set too large, the model
cannot adapt to the new environment and the performanceeoitidel will decrease as
well. Moreover, the scores of AUC are relatively stable abthe best values of the two
parameters, which means they are not very sensitive.

To further demonstrate the capabilities of our system, wapare LPP tracker with
Struck (the best method ir2{]) on three more challenging sequences nametbrcross,
panda andsheep. There are several difficulties, which are normally not ideed by other
methods before: (1) the target makes a complete rotatigrihé2target moves out of view
and gets back with a totally different appearance and lonai{3) the video is very long
and various challenges appear simultaneously. To somatexte assumptions of smooth
motion and smooth variation necessary for most methods @reatid anymore in such
sequences. The three sequences with the above three tddBowlll be good examples to
test the flexibility and stability of a model. Firstly, Sttutails at frames 30, 1016 and 828
for sequencemotorcross, panda andsheep, respectively, when the target starts to move out
of view. However, LPP tracker can successfully reject ttarismng from wrong samples
and keep its stability. Secondly, from Fi§, we can see that LPP tracker can tackle all
these problems simultaneously because LPP tracker buiklglassifier for each problem.
Finally, Fig.6(a) demonstrates the weights of classifiers on all the fravhesquenceheep.
When no valid target is detected, LPP tracker will samplectassifiers according to their
historical weights. Once the predefined target appearsein, \iPP tracker will select the
most effective classifier to track the target. From Eigwe can see that the weights are very
sparse and just a few members will be run for each frame.

5 Conclusion

In this paper, we have proposed a novel Learn++ tracker Rralitracking. By means of
automatically adjusting the members of the active subde® tracker achieves an optimal
balance between flexibility and stability of the classifiarsl between the efficiency and
performance of the model. In future work, it is worth considg using other constraints
to guide the sampling of classifiers. Moreover, for abrugbdeation of the target when
typically n < 5, LPP tracker may refuse to add a new classifier to the enseniibw to
define an adaptive quantity to tackle such a situation is uingestigation.
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