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Abstract

In this paper, a Learn++ (LPP) tracker is proposed to efficiently select specific clas-
sifiers for robust and long-term object tracking. In contrast to previous online methods,
LPP tracker dynamically maintains a set of basic classifierswhich are trained sequen-
tially without accessing original data but preserving the previously acquired knowledge.
The different subsets of basic classifiers can be specified tosolve different sub-problems
occurred in a non-stationary environment. Thus, an optimalclassifier can be approximat-
ed in an active subspace spanned by selected adaptive basic classifiers. As a result, LPP
tracker can address the “concept drift”, by automatically adjusting the active subset and
searching the optimal classifier in an active subspace spanned by the subset according to
the distribution of the samples and recent performance. Experimental results show that
LPP tracker yields state-of-the-art performance under various challenging environmental
conditions and, especially, can overcome several challenges simultaneously.

1 Introduction

Tracking-by-detection approaches [3, 4, 7, 19, 20], which treat the tracking problem as a
classification task, have recently been proposed to overcome difficulties in the non-stationary
environment (NSE) [22]. To improve the flexibility of the model, strategies for feature and
sample selection are used in a large number of methods. Two classical discriminative fea-
ture selection methods were proposed in [7] and [19]. Semi-supervised learning [9] and
multiple instance learning [4] were adopted for sample selection. AdaBoost [3] was used
for both feature and sample selection. Compressive sensing[24] and sparse representation
[16] methods are also explored to build appearance models for object tracking. Moreover,
to avoid wrong updates, multi-models [5, 8, 14, 20, 23] which have more diversities were
employed for visual tracking. Large scale experiments withvarious evaluation criteria to
gauge the state-of-the-art are given in [21].

Most machine learning algorithms can learn from data that are assumed to be drawn
from a fixed but unknown distribution. However, this assumption cannot be valid in case of
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(a) (b)

Figure 1: (a) Assuming that the best classifiers for the previous frames are available, which
classifiers should be used in the current frame (bottom right)? f2, f5 or their combination?
Also, when the target moves out of view then comes back, whichclassifiers are the best to
be used? This paper tries to solve these problems in object tracking. (b) Framework of SR.

tracking problem. Traditional machine learning methods applied to the tracking problem will
fail when there is a “concept drift” in the NSE. That is because the function learnt on a fixed
sample set previously collected may not reflect the current state of nature due to a change
in the underlying environment [12]. In object tracking, the distribution of samples changes
a lot due to the deformation of the object and the change of thebackground. Especially
during the transition between different difficulties (sub-problems), such as from occlusion
to varying viewpoints, the samples in the two different situations differ significantly. Thus,
the separability of features and classifiers used in previous frames will decrease in the new
situation. Ifx are the samples andy ∈ {1,−1} are classes, then the “concept drift” can be
defined as any scenarios where the posterior probability changes over time:

KL(pt+n(y|x), pt (y|x))< τd (1)

wheret is the time,n is the time step of drift,τd is a small value and the Kullback-Leibler
(KL) divergence describes the dissimilarity of the two distributions.

Learn++ [18] is a new type of machine learning method to learn additionalinformation
from new data without retrieving the original samples. In [12], Learn++ is used to solve the
problems in NSE, however, their method does not have a mechanism to make the classifier
members learn from the new samples, exit from the active subset and revive from the ensem-
ble, which are important for both the speed and the robustness of the model. In this paper,
by enabling and designing these critical and flexible functions, we propose a fundamentally
new Learn++ method for robust and long-term object tracking, named as LPP tracker. LPP
tracker dynamically maintains a set of basic classifiersfi ∈ Ω t

e which are trained sequential-
ly without accessing original data but preserving the previously acquired knowledge. The
“concept drift” problems can be solved by adaptively selecting the most suitable classifiers
named as active subsetΩ t

a ⊂ Ω t
e as shown in Fig.1(a). These basic classifiers are inde-

pendent from each other and used to address different sub-problems. For each frame, the
democratic mechanism can be adopted, where all classifiers should compete with each other
to be added into an active subset to suit the present environment. Next, the optimal classifier
ft in the present environment can be fast searched in a functionspace linearly spanned by
these basic classifiers in the active subset.

As far as we know, LPP tracker is the first tracking method thatdesigns an explicit
model for each sub-problem and the models can be automatically altered according to the
environment. As a result, LPP tracker can address various “concept drift” problems appeared
in one video simultaneously. The rest of the paper is organized as follows. A fast and
brief descriptor for image patches is introduced in Section2. Section 3 details the proposed
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Learn++ based method for visual tracking. Experimental results are reported and analyzed
in Section 4. Finally, conclusions are drawn in Section 5.

2 Structural Representation for Image Patches

A fast structural representation (SR) is introduced to represent an image patch as shown in
Fig. 1(b). SR has a three-level hierarchy: H0-virtual stage of filtering, H1-stage of random
projection, and H2-stage of encoding. The advantage of SR isthat the optimal projections
and filters can be decided using selecting the third-level nodes by our proposed classifiers.

H0: filtering. Given a patchz ∈ RI×J , a set of rectangular smoothing filters{hi× j ∈
Ri× j,1≤ i ≤ I,1≤ j ≤ J} are defined, for which all entries of each filterhi× j equal 1/(i× j).
In total, there areI× J filters, each of which is convolved with the entire patch and produces
I × J values. So, the dimensionnV = (IJ)2 of the original featureV ∈ RnV is very high and
much information is redundant.

H1: random projection. Next, a sparse random matrix is used for dimensionality reduc-
tion, which is defined as:P(i, j) = 1 with the probability 1/2s, P(i, j) = −1 with the prob-
ability 1/2s andP(i, j) = 0 with the probability 1−1/s, wherep is the probability. In [1],
Achlioptas pointed out that this matrix withs = 2 or 3 satisfies the Johnson-Lindenstauss
lemma. Compressive sensing theory ensures that the extracted features preserve almost all
the information of the original image patch. In this paper, we sets = nV/4. Thus, the value
vk ∈ R projected by each row of the random matrix is:vk = P(k, ·)V . For patches with a
different sizez∗ ∈ RI∗×J∗ , the number of rectangular features will be different. In fact, we
need not to resize the patch. Applying a scaleIJ/(I∗J∗) to the locations of elements inV ∗

will be feasible to realize scale invariance. For each valuevk, its meanµk and varianceσk

of positive samples will be computed when its correspondingclassifier is trained. Thus, for
each projected valuevk, a binary feature can be defined as:bk = Γ⌊vk ∈ [µk −σk,µk +σk]⌋,
whereΓ⌊⌋ is the indicative function.

H2: encoding. The third level is constructed similarly as Fern [17], in which a feature
was calculated by comparing two randomly selected pixels ina patch. However, directly
comparing two pixels is very sensitive to noise, especiallywhen the two pixels are located
around an edge. Normally, to eliminate this drawback, filters will be used firstly. Instead
of comparing the pixels, the binary featurebk can be considered as basic cues. Each Fern
consists of a set of binaries, and in this paper, the size of the setnb is set to 7. Thus, the node
of the deepest level in the hierarchy is defined as:B = ∑nb

k=0 2kbk. Moreover, if the size of a
filter is fixed, the number of nonzero entries of random projection is set to two, and the two
weights are also opposite numbers, then SR will become the classical framework of Fern.

3 Learn++ for Solving the Problem of “Concept Drift”

The motion modelp(at |at−1), i.e., Optical Flow (OP) [15], reflects the motion characteristic
of the target by predicting the stateat based on the previous stateat−1. If p(at |at−1) > τ1,
then at is a valid result no matter whether “concept drift” occurs ornot. The P-N con-
straints [11], p(at | fi), were proposed to estimate the confidence of the classifierfi. If
p(at | fi) > τ2(i) where fi ∈ Ω t

a, the outcome of classifierfi is validated. This triggers the
application of the P-N constraints that exploit the structure of the data. From the manifold



4 FENG ZHENG, LING SHAO, JAMES BROWNJOHN AND VITOMIR RACIC: LPP TRACKER

perspective, P-N constraints maintain a purified sub-manifold for positive and negative sam-
ples. If p(at |Ω t

a)> τ2, wherep(at |Ω t
a) = maxi p(at | fi), there is no occurrence of drifting.

3.1 Objective function

AssumeΩ t
c
⋃

Ω t
a = Ω t

e, nt
e = |Ω t

e| andnt
a = |Ω t

a|, where| · | denotes the number of members
of the set.W t

i denotes the historical weights of all existingfi ∈ Ω t
e. In framet, xt

l andyt
l

denote the structural representation and the label of imagepatchzt
l , respectively. Each entry

xt
l(i) contains thenB number of nodes{Bi, j : j = 1, · · · ,nB}, for the classifierfi. Also, X t is

the set of collected samples andnt
X = |X t | . The distribution of samplesDt will be calculated

according to the results of old classifiers and used to describe the importance of samples.
For simplicity, we definefi(xt

l) = fi(xt
l(i)), wt = (wt

1, · · · ,w
t
na
) andΩ t

e = ( f1, · · · , fna)
T . Our

goal is to find an optimal classifierft with most discriminative features in the function space
Ht linearly spanned by a set of classifiersΩ t

e which are trained in previous frames, where
Ht = {ht : ht =wt Ω t

e}. Moreover, to improve the efficiency of the system, the weightswt are
required to be sparse so that most basic classifiers are not used in the current frame. Thus, in
theory, the objective function is defined as:

wt = argmin
wt ∑

l

L(ht(xt
l),y

t
l)+λ

∣

∣

∣

∣wt
∣

∣

∣

∣

0 (2)

whereL andλ are the loss function and regularization parameter, respectively. Therefore,
we obtain the hypothesis as:

ft = wtΩ t
e (3)

The optimal classifierft can be used to detect the object in the current frame (new environ-
ment). The final classification for each image patchxt

i is achieved as:yt
l = sign(ft(xt

l)).
Eqn. 2 cannot be optimized directly, due to that the true labelyt

l of image patchxt
l

is unknown. However, based on the assumption of the “conceptdrift” (Eqn. 1), we can
approximate to the optimal solution using the classifiers that have yielded good performance
in recentn frames or in the same situations by Learn++. In the following, how to train basic
classifiersfi and how to approximate the optimal classifierft will be introduced.

3.2 Basic classifier

The Naïve Bayesian is used as the basic classifier in our proposed system. Thus,fi can be
defined by posterior probabilities by combiningnB nodes (assuming an uniform priorp(y)):

fi(xl) = argmax
y

p(y|xl(i)) (4)

wherep(y|xl(i)) ∝ ∏nB
j p(xl(i, j)|y). Therefore, for eachfi, the posterior probabilities will be

trained and updated to adapt to the changes of the environment and the object by calculating
and updating the class conditional distributionpt(Bi, j|y) of each Fern.

Training. The parameters of SR for each classifierfi will be generated randomly. Once
generated, these parameters will be fixed during the whole lifespan of the classifierfi. At
framet, based on a setX t

1 with all positive samples and 2000 negative samples in the set X t

and distributionDt , we can define two quantities which are used to train or updateclassifiers:
Nt(y,Bi, j) = ∑l Dt

lΓ⌊xt
l(i, j) = Bi, j⌋Γ⌊yt

l = y⌋ andNt (y) = ∑l Dt
lΓ⌊yt

l = y⌋, wherext
l ∈ X t

1.
Other negative samples are used to evaluate the classifier. Therefore,τ2(i) = maxat

l
p(at | fi),

whereat
l denotes the corresponding states of negative samplesxt

l ∈ X t/X t
1. Thus, the class

conditional distributions forfi are calculated by:
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pt(Bi, j|y) =
1+N(y,Bi, j)

1+N(y)
(5)

whereN(y,Bi, j) = Nt(y,Bi, j) andN(y) = Nt(y).
Learning. If fi has been used in framet. The setX t can be used to update the class

conditional distributionpt(Bi, j|y) so as to adapt to the changes by:

N(y,Bi, j)⇐ N(y,Bi, j)+Nt(y,Bi, j);N(y)⇐ N(y)+Nt(y) (6)

By recalculating Eqn.5, the updated distributions are obtained.

3.3 Tracking by detection

At the beginning(t = 0), random Fernsf1 needs to be trained according to the selected
target in the first frame and we can directly jump to the samplecollection step. At frame
t(t > 0), the following steps which are similar to most tracking-by-detection approaches are
processed sequentially. First, by applying the sliding window method to the current frame,
the classifier in the active subset is used to classify each patch of this frame. Second, the
OP method is used to compare the two targets in the two successive frames. Third, the
probabilitiesp(at |at−1) andp(at |Ω t

a) are calculated. Fourth, all states classified as positive
samples byft will be fused and the optimal stateat with the highest confidence in the current
frame will be obtained. Finally, the classifiers will be updated according to the present
performance. The entire procedure is organized as in Algorithm1.

Algorithm 1 LPP tracker
Initialization Define a target in the first frame and build a classifierf1.
Repeat t = 1, · · ·
(0) Capture a new frame.If no frame:Exit .
(1) Run each classifierfi ∈ Ω t

a of the active subset on the present frame.
(2) Combine the resultsft according to Eqn.3 and obtain the best results:at .
(3) If a t is valid target: Compute the probabilitiesp(at |at−1) andp(at | fi).
(4) If p(at |at−1)> τ1: Collect and weight samplesX t ,
(5) If p(at |Ω t

a)> τ2: Update the old classifiersfi,
(6) Else If p(at |Ω t

c)> τ2: Revive a classifier fromΩ t
c;

(7) Else: Train a new classifierfnt
a+1.

End
End

(8) Resampling and evaluate the classifiers.

Return Update the classifierft+1 and set the stateat , Go To (0).

3.4 Collecting and weighting samples

If p(at |at−1) > τ1 is satisfied, it means that the tracked target is valid and canbe used to
update the set of classifiers. Otherwise, when no valid target is in the current frame, we can
directly jump to the classifier sampling step.

Collecting. The sample setX t is constructed as follows: If the overlap ofat and at
l

exceeds 0.5, the patchzt
l of stateat

l will be considered as the positive sample; otherwise
if the overlap ofat andat

l is lower than 0.2, it is considered as the negative sample. Also,
according to the fused resultsat , 400 positive samples will be generated by the affine warping
of the selected patchzt to increase the richness of positive samples.

Weighting. At the beginning(t = 0), the distribution of samplesDt used to train the
first classifier is set to be equal to 1/nt

X . If (t > 0), the distribution of patches in thetth
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frame will be computed. Firstly, the current ensembleft is evaluated on the new patchesX t :

Et = 1
nt

X
∑

nt
X

l=1 Γ⌊sign(ft(xt
l)) 6= yt

l⌋. Secondly, sample weightsDt
l of xt

l are defined by:

Dt
l =

{

Et , sign(ft(xt
l)) = yt

l ;
1, otherwise.

(7)

Finally, setDt
l ⇐ Dt

l/∑
nt

X
l=1 Dt

l . Normalizing the error weights by their sum then provides us
the updated penalty distribution. Samples of the new environmentxt

l , which are not recog-
nized by the existing knowledge baseft , are identified.

3.5 Sampling the classifiers

If the current active subset can deal with the changes, the optimal classifier in the next frame
has the same basic classifiers. To increase the adaptivity, the new samples will be learnt
by existing classifiers. For eachfi ∈ Ω t

a, if p(at | fi) > τ2(i), then fi will be updated by the
samplesX t according to their distributionDt

l following Eqn.6. Otherwise, reviving the old
classifiers or training a new classifier will be considered.

Reviving. If p(at |Ω t
a)< τ2 andp(at |at−1)> τ1, due to the “concept drift”, it means that

the current ensemble cannot deal with the changes. So, a new set of basic classifiers need
to be built. New classifiers will be added into the ensemble sothat the optimal classifier
will be searched in a new set of classifiers. Firstly, all existing classifiersfi ∈ Ω t

c will be
used to check whether the current appearance can be recognized or not by old classifiers. If
a similar “concept drift” has occurred before, an old classifier can be revived. This proce-
dure is efficient to compute because no sliding window is needed. If p(at |Ω t

c) > τ2, where
p(at |Ω t

c) = maxi p(at | fi), there exists one classifierfi that can recognize the current state.
Thus, this classifierfi will be revived directly without adding a new one. Otherwise, a new
classifier will be trained and added to the ensemble following Eqn.5.

Resampling.No matter whether the valid target has been detected in the current frame or
not, some classifiers killed before will be revived through the resampling procedure accord-
ing to the historical weightsW t

i . This will increase the diversity and avoid the local optimal
solution. The adaptive rejection sampling method [6] is employed to realize this step.

Evaluating. For finding the optimal classifier for the next frame, evaluating all classifiers
fi ∈ Ω t+1

a on the new dataX t is necessary. Firstly, the error of eachfi ∈ Ω t+1
a on weighting

samples is defined as:εt
i = ∑

nt
X

l=1 Dt
lΓ⌊ fi(xt

l) 6= yt
l⌋. Thus,εt

i ⇐ εt
i /(1−εt

i ). εt
i can be consid-

ered as the performance of the function. Iffi contributes mostly to the error of the ensemble
classifierft , εt

i will be larger than others. Secondly, for incorporating theperformance on
recent frames, a sigmoidal error weight is defined as:γt

i (m) = 1/(1+exp(λ1m−λ2)),{m =
0, · · · ,nt

e+η− i}, whereλ1,λ2 are two parameters,η is the time step andi is the index of the
function in the ensemble. Thus, the weights are normalized so thatγt

i (m)⇐ γt
i (m)/∑m γt

i (m)
(see Fig.2(a)). Finally, the error offi ∈ Ω t+1

a is weighted with respect to time so that re-
cent competence (error rate) is considered more heavily forcategorizing knowledge. The
weighted errors are defined by:

β t
i =

nt
e+η−i

∑
m=0

γt
i (n

t
e +η − i−m)εt−m

i (8)

Thus, we calculate the classifier voting weights:wt
i = log1/β t

i and normalize them:wt+1
i ⇐

wt
i/∑i wt

i . The instant voting weights can be used to update the historical weights according
to W t+1

i ⇐ (1−α)W t
i +αwt

i, whereα is the updating rate and is set to 0.05.



FENG ZHENG, LING SHAO, JAMES BROWNJOHN AND VITOMIR RACIC: LPP TRACKER 7

0
5

10
15

20

0

5

10

0

0.1

0.2

0.3

0.4

 

Function Turns

 

W
ei

gh
ts

Time Steps

(a) (b)

Figure 2: (a) Signoidal weights used in Eqn.8. λ1, λ2 andη are set to 0.5, 10 and 8,
respectively. (b) The details of test videos. IV-Illumination Variation; SV-Scale Variation;
OCC-Occlusion; DEF-Deformation; MB-Motion Blur; FM-FastMotion; IPR-In-Plane Ro-
tation; OPR-Out-of-Plane Rotation; BC-Background Clutters.

Challenges LPP Struck VTS IVT VTD MIL OAB Frag CT SemiT
IV 0.932 0.860 0.957 0.900 0.888 0.569 0.697 0.565 0.704 0.463

OPR 0.858 0.775 0.754 0.718 0.766 0.670 0.704 0.627 0.625 0.544
SV 0.928 0.816 0.763 0.779 0.771 0.769 0.793 0.609 0.805 0.449

OCC 0.772 0.659 0.723 0.749 0.733 0.583 0.677 0.675 0.608 0.519
DEF 0.871 0.682 0.595 0.674 0.6000 0.618 0.753 0.624 0.643 0.677
MB 0.919 0.776 0.726 0.513 0.710 0.847 0.487 0.549 0.614 0.293
FM 0.875 0.856 0.546 0.459 0.547 0.767 0.579 0.713 0.571 0.448
IPR 0.861 0.867 0.869 0.819 0.885 0.778 0.672 0.622 0.659 0.489
BC 0.882 0.912 0.725 0.769 0.709 0.714 0.697 0.661 0.594 0.609

Overall 0.844 0.817 0.736 0.734 0.720 0.669 0.664 0.658 0.605 0.552

Table 1: The precision rankings of 10 tracking methods on challenging sequences. Bold
numbers denote the best precision scores.

Optimal approximation. To balance the increase of the diversity of the ensemble and
efficiency of the model, the following conditions will be considered: (1) For anyfi ∈ Ω t+1

a
with wt+1

i < τ3, the classifiers will be killed and moved toΩ t+1
c ; (2) For anyfi ∈ Ω t+1

c with
W t+1

i < τ3, the classifiers will be deleted for ever. Because the size ofΩ t+1
a is much smaller

thanΩ t+1
e , the weightswt+1 are sparse. Therefore, the optimal approximation classifier used

in the next frame will be defined by:ft+1 = ∑ fi∈Ω t+1
e

wt+1
i fi.

4 Experiments

In our experiments,τ1, τ2 andτ3 are set to 0.75, 0.9 and 0.05, respectively. The greyscale
images are taken as input in our experiments. LPP tracker will be compared with 9 state-of-
the-art methods, including IVT [19], VTD [ 13], VTS [14], MIL [ 4], OAB [8], SemiT [9],
Frag [2], Struck [10] and CT [24], most of which were recently proposed. The 21 videos
summarized in Fig.2(b) are used for testing. Our experiments follow the settingin [21]
and the results of other methods come from this report as well. Each sequence is repeated 5
times with different random seeds by LPP tracker, and the median results are reported. More
results are included as supplemental material1. To compare with various methods, two types
of metric are used to evaluate the different methods. (1) Center location distance: following
[21], if the distance between the center of the tracked patch andthe center of ground truth

1More video results and code will be released on our website: https://sites.google.com/site/lpptracker/.
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Figure 3: The success plots and AUC rankings of 10 tracking methods on challenging se-
quences.

is within 20 pixels, the estimated target is considered as correct. Thus, the precision can be
defined as the proportion of the correctly tracked frames to the total number of frames. The
precision rankings of the 10 methods on the 21 videos are given in Table1. (2) Bounding box
overlap: the success plot shows the ratios of successful frames at the thresholds varying from
0 to 1. The area under curve (AUC) [21] of each success plot is used to rank the tracking
algorithms. Both success plots and AUC rankings are shown inFig. 3 and some screenshots
are shown in Fig.4.

4.1 Comparison with state-of-the-art methods

Firstly, taking the sequencesinger1 (624×352) for example, CT, LPP tracker and Struck
take the average time per frame of 17ms, 55ms and 209ms respectively on a Dell M4600 (In-
tel Core 2.8GHz and 8G RAM). Thus, the LPP tracker can address most real-world problems
in real-time (more than 18 FPS). Secondly, from Table1, LPP tracker can achieve the best
performance among all the 10 methods on most of the challenges. On the one hand, for chal-
lenges of out-of-plane rotation, scale variation, occlusion and motion blur, LPP tracker has
a great advantage over the other methods. On the other hand, for the other three challenges,
LPP tracker is not the best one but the score of precision is close to the best one. The score
differences to the best one are less than 0.03. The overall performance of LPP tracker on all
sequences is 0.844 and higher than that of the second method Struck by 0.027. Thirdly, from
top left of Fig.3, we can see that LPP tracker is ranked as the second best on allthe 21 test-
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Figure 4: Screenshots of top 6 tracking methods (according to AUC rankings in the top left
plot of Fig. 3) on challenging sequences. In total, 11843 frames are tested.

Figure 5: Comparsion of tracking results on three more challenging sequences between LPP
tracker (Red) and Struck (Green).motorcross (top row), panda (middle row) andsheep
(bottom row) have 1800, 3000 and 2532 frames, respectively.

ing videos and outperforms other methods by at least 0.38 except for Struck. It demonstrates
that our proposed LPP tracker is relatively robust to various challenges. Also, LPP tracker
works much better than all other methods on the challenges ofocclusion, out-of-plane rota-
tion and scale variation. Particularly for scale variation, LPP tracker outperforms the second
best method by 0.55. In addition, on the challenges including deformation, motion blur and
illumination variation, LPP tracker performs closely to the best method.

In total, LPP tracker gains six firsts, two seconds and one fourth by the precision ranking,
and it gains three firsts, three seconds and two fourths by theAUC ranking. The differences
between the two rankings are on deformation, motion blur andfast motion. That is because
LPP tracker can build a new classifier for one part of the object when there are some large
deformations in the remaining part in these challenges, where the object has been tracked by
LPP tracker but the score of overlap is relatively low.

4.2 More analysis of the LPP tracker

There are two parameters of motion constraintsτ1 andτ2 to guide the learning of LPP track-
er. In this section, when we investigate one parameter, other parameters will be set to default
(same values for all videos). In Fig.6(b) and (c), the overall performance on all the videos
vs. the different settings for the two parameters are given.We can see that the parameter
τ1 achieves the best performance around 0.75 while the parameterτ2 achieves the best per-
formance around 0.9. If the two parameters are set too small, the model will become more
flexible but less stable. More erroneous information will beadded into the model and the
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Figure 6: (a) The weights for the optimal classifierft . (b) The AUC performance vs. param-
eterτ1. (c) The AUC performance vs. parameterτ2.

performance will deteriorate. However, if the two parameters are set too large, the model
cannot adapt to the new environment and the performance of the model will decrease as
well. Moreover, the scores of AUC are relatively stable around the best values of the two
parameters, which means they are not very sensitive.

To further demonstrate the capabilities of our system, we compare LPP tracker with
Struck (the best method in [21]) on three more challenging sequences namedmotorcross,
panda andsheep. There are several difficulties, which are normally not considered by other
methods before: (1) the target makes a complete rotation; (2) the target moves out of view
and gets back with a totally different appearance and location; (3) the video is very long
and various challenges appear simultaneously. To some extent, the assumptions of smooth
motion and smooth variation necessary for most methods are not valid anymore in such
sequences. The three sequences with the above three difficulties will be good examples to
test the flexibility and stability of a model. Firstly, Struck fails at frames 30, 1016 and 828
for sequencesmotorcross, panda andsheep, respectively, when the target starts to move out
of view. However, LPP tracker can successfully reject the learning from wrong samples
and keep its stability. Secondly, from Fig.5, we can see that LPP tracker can tackle all
these problems simultaneously because LPP tracker builds one classifier for each problem.
Finally, Fig.6(a) demonstrates the weights of classifiers on all the framesof sequencesheep.
When no valid target is detected, LPP tracker will sample theclassifiers according to their
historical weights. Once the predefined target appears in view, LPP tracker will select the
most effective classifier to track the target. From Fig.6, we can see that the weights are very
sparse and just a few members will be run for each frame.

5 Conclusion

In this paper, we have proposed a novel Learn++ tracker for visual tracking. By means of
automatically adjusting the members of the active subset, LPP tracker achieves an optimal
balance between flexibility and stability of the classifiersand between the efficiency and
performance of the model. In future work, it is worth considering using other constraints
to guide the sampling of classifiers. Moreover, for abrupt deformation of the target when
typically n < 5, LPP tracker may refuse to add a new classifier to the ensemble. How to
define an adaptive quantity to tackle such a situation is under investigation.



FENG ZHENG, LING SHAO, JAMES BROWNJOHN AND VITOMIR RACIC: LPP TRACKER 11

References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss
with binary coins.Journal of Computer and System Sciences, 66:671–687, 2003.

[2] Amit Adam, Ehud Rivlin, and Ilan Shimshoni. Robust fragments-based tracking using
the integral histogram. InProc. CVPR, 2006.

[3] Shai Avidan. Ensemble tracking.IEEE Tansactions on PAMI, 29(2):261–271, 2007.

[4] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Robust object tracking with
online multiple instance learning.IEEE Tansactions on PAMI, 33(8):1619–1632, 2011.

[5] Qinxun Bai, Zheng Wu, Stan Sclaroff, Margrit Betke, and Camille Monnier. Random-
ized ensemble tracking. InProc. ICCV, 2013.

[6] Christopher M. Bishop.Pattern Recognition and Machine Learning. Springer, ISBN:
0-38731073-8, 2007.

[7] Robert T. Collins, Yanxi Liu, and Marius Leordeanu. Online selection of discriminative
tracking features.IEEE Tansactions on PAMI, 27(10):1631–1643, 2005.

[8] Helmut Grabner and Horst Bischof. On-line boosting and vision. InProc. CVPR, 2006.

[9] Helmut Grabner, Christian Leistner, and Horst Bischof.Semi-supervised on-line boost-
ing for robust tracking. InProc. ECCV, 2008.

[10] Sam Hare, Amir Saffari, and Philip H. S. Torr. Struck: Structured output tracking with
kernels. InProc. ICCV, 2011.

[11] Zdenek Kalal, Jiri Matas, and Krystian Mikolajczyk. P-n learning: Bootstrapping bi-
nary classifiers by structural constraints. InProc. CVPR, 2010.

[12] Matthew Karnick, Metin Ahiskali, Michael D. Muhlbaier, and Robi Polikar. Learn-
ing concept drift in nonstationary environments using an ensemble of classifiers based
approach. InProc. IJCNN, 2008.

[13] Junseok Kwon and Kyoung Mu Lee. Visual tracking decomposition. InProc. CVPR,
2010.

[14] Junseok Kwon and Kyoung Mu Lee. Tracking by sampling trackers. InProc. ICCV,
2011.

[15] Bruce D. Lucas and Takeo Kanade. An iterative image registration technique with an
application to stereo vision. InProc. IJCAI, 1981.

[16] Xue Mei and Haibin Ling. Robust visual tracking using l1minimization. InProc.
ICCV, 2009.

[17] Mustafa Ozuysal, Pascal Fua, and Vincent Lepetit. Fastkeypoint recognition in ten
lines of code. InProc. CVPR, 2007.

[18] Robi Polikar, Lalita Udpa, Satish S. Udpa, and Vasant Honavar. Learn++: An in-
cremental learning algorithm for supervised neural networks. IEEE Tansactions on
System, Man, and Cybernetics-Part C: Application and Reviews, 31(4):497–508, 2001.



12 FENG ZHENG, LING SHAO, JAMES BROWNJOHN AND VITOMIR RACIC: LPP TRACKER

[19] David A. Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental
learning for robust visual tracking.International Journal of Computer Vision, 77(3):
125–141, 2008.

[20] Jakob Santner, Christian Leistner, Amir Saffari Thomas Pock, and Horst Bischof. Prost:
Parallel robust online simple tracking. InProc. CVPR, 2010.

[21] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A benchmark.
In Proc. CVPR, 2013.

[22] Hanxuan Yang, Ling Shao, Feng Zheng, Liang Wang, and Zhan Song. Recent advances
and trends in visual tracking: A review.Neurocomputing, 74(18):3823–3831, 2011.

[23] Ju Hong Yoon, Du Yong Kim, and Kuk-Jin Yoon. Visual tracking via adaptive tracker
selection with multiple features. InProc. ECCV, 2012.

[24] Kaihua Zhang, Lei Zhang, and Ming-Hsuan Yang. Real-time compressive tracking. In
Proc. ECCV, 2012.


