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Abstract

We present Hough Networks (HNs), a novel method that combines the idea of Hough
Forests (HFs) [12] with Convolutional Neural Networks (CNNs) [18]. Similar to HFs we
perform a simultaneous classification and regression on densely extracted image patches.
But instead of a Random Forest (RF) we utilize a CNN which is able to learn higher-
order feature representations and does not rely on any handcrafted features. Applying
a CNN on a patch level has the advantage of reasoning about more image details and
additionally allows to segment the image into foreground and background. Furthermore,
the structure of a CNN supports efficient inference of patches extracted from a regular
grid. We evaluate HNs on two computer vision tasks: head pose estimation and facial
feature localization. Our method achieves at least state-of-the-art performance without
sacrificing versatility which allows extension to many other applications.

1 Introduction
Head pose estimation and facial feature localization are keys to advanced human computer
interaction systems and human behavior analysis. Due to their relevance, both tasks have
gained a lot of attention in the computer vision community [1, 2, 6, 10, 11, 21, 23, 30, 32].

Recent state-of-the-art methods like [2, 6, 11] report impressive results and are real-time
capable. However, most of the available approaches utilize handcrafted features. In contrast,
our method is motivated by the success of Deep Neural Networks (DNNs) in recent years on
a variety of tasks, such as image classification and localization [17, 22, 25], human pose es-
timation [27], and face recognition [26]. Impressive results are enabled by the high capacity
of DNNs, the ability to learn higher-order feature representations and the capability to train
them in reasonable time through the computational power of modern Graphics Processing
Units (GPUs).

On the other hand, the principle of Hough Forests (HFs) [12, 13] proved to be very
successful in many computer vision applications, such as head pose estimation [10, 11],
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human pose estimation[14], or facial feature localization [5, 6]. All these methods train
a Random Forest (RF) for joint classification and regression. For inference, patches are
densely sampled from the image and the model classifies for each patch if it belongs to the
foreground or the background. Additionally, for foreground patches the model performs a
regression of vectors to vote in a Hough space.

We propose a novel method that combines the idea of HFs with the representative power
of Convolutional Neural Networks (CNNs), Hough Networks (HNs). Identical to HFs, we
perform simultaneously classification and regression on image patches, where the patches
are large enough to cover some context, but small enough to gather image details. However,
in contrast to HFs, HNs do not rely on handcrafted features and are instead able to learn them
directly from annotated training images. Further, the structure of a CNN also allows for fast
inference, as we can apply the model on the whole image instead on every overlapping patch
independently.

2 Related Work
Head pose estimation, facial landmark localization and neural networks are very active fields.
Since a complete literature review is beyond the scope of this paper, we analyze the ap-
proaches that are most related to our method.

Head Pose Estimation Several works in the literature address the problem of estimating
the pose of the human head [19] and existing methods can be divided by the type of input data
(2D images, depth data, or both). In general, approaches that use 2D images are sensitive to
illumination and the lack of distinctive features. Due to this and because cheap depth sensors
have already entered the consumer market, we focus on works that use depth data as input.

Breitenstein et al. [1] presented a method based on first computing hypotheses of nose
locations from high-resolution depth images and than minimizing a error function between
these hypotheses and reference pose images. The method achieves real-time performance,
if implemented on a GPU. The approach of Fanelli et al. [9] utilizes a Random Regression
Forest (RRF) for this estimation task. It also uses high resolution depth data as input, but
in contrast to [1] the method of [9] has not the drawback that the nose has to be visible in
any frame. The approach was later adopted to depth data from consumer depth cameras
[10, 11]. In addition, they trained the RF to discriminate between head and background
patches and jointly regress the head center location and the head pose. Schulter et al. [21]
recently improved the method by using an Alternating Regression Forest (ARF). In contrast
to the RRF, an ARF minimizes a global loss to obtain better generalization.

Facial Feature Localization The localization of facial feature from 2D images is a well-
studied problem. Early, holistic approaches include Active Contour Models [16], Active
Shape Models [3] and Active Appearance Models [4]. In general, these methods suffer from
poor generalization properties.

Most of recent work tackles the problem in a regression framework by learning one or
several real-valued functions, which predict the location of different facial features. Valstar
et al. [28] used Support Vector Regression and Markov Random Fields to constrain the search
space. Yang and Patras [31] utilized a Structured-Output Regression Forest that learns at
each leaf node a regression function and simultaneously an interdependency model between
parts in a star-graph. In the work of Dollár et al. [7], they developed a cascade of regressors,
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e.g. random ferns. The first stage learns a rough estimate of facial feature locations, whereas
subsequent stages learn the difference between these estimates and the true locations to refine
the results. Burgos-Artizzu et al. [2] improved the previous method to better handle occlusion
and shape variations by additional learning point occlusions and introducing shape-indexed
features. The work proposed by Dantone et al. [6] uses a Conditional Regression Forest. A
first trained RRF predicts the head pose and depending on the result another RRF computes
the facial feature locations from densely extracted image patches.

Neural Networks Image Processing with neural networks goes back at least to the 1980s
and the introduction of the back-propagation algorithm [8]. LeCun and Bengio [18] devel-
oped CNNs that can learn local features and higher-order feature representations via consec-
utive convolutions with an arbitrary number of filter kernels and sub-sampling.

In the recent years, deep network architectures have become popular due to the huge
amount of training data available and the ability to train the networks more efficient on GPUs.
Krizhevsky et al. [17] obtained impressive results on the Large Scale Visual Recognition
Challenge 2012. Szegedy et al. [25] presented a method for object detection based on the
deep architecture and used it for object localization by regressing bounding boxes.

CNNs have also been already applied to pose estimation problems and facial feature lo-
calization. Toshev and Szegedy [27] trained a cascade of DNNs to estimate human joint
locations in color images. Each stage of the network gets a higher resolution crop of the im-
age as input to refine the results. The approach of Sun et al. [23] for facial feature localization
is similar, except that they learn in each stage an ensemble of networks.

In contrast to the methods of [23, 27], our approach does not rely that the face was
previously detected by another method. The proposed method is similar to the ideas of
[6, 10, 11] as we perform a joint classification and regression on image patches, but instead
of a RF we utilize a CNN.

3 Hough Networks
Our method is inspired by the HFs [12, 13], also named Discriminative Random Regression
Forest [10]. First, overlapping patches are densely extracted from the image along a regular
grid. Then, a binary classifier computes the patch probability for belonging to foreground
or background (e.g. to a face, or not). Simultaneously, for each foreground patch several
real-valued numbers are predicted, e.g. head center and pose, or facial feature locations.

Notation In this work we will use the following notation: We have a supervised learning
problem and assume a training dataset {(xs, ts)}S

s=1 with S samples. An image patch xs ∈
RM×N×K is of size M×N and has K channels. A target vector ts = (ts,c, ts,r)

T contains
the classification information that discriminates between foreground and background ts,c ∈
{0,1} along with regression values ts,r ∈RR. We denote y(x,θ) ∈R1+R as the classification
and regression function with model parameters θ . With a slight abuse of notation we define
ys = (ys,c,ys,r)

T = y(xs,θ).

Architecture In our approach, the classification and regression function is based on a
CNN. The CNN consists of 6 layers, where each layer performs a non-linear transforma-
tion of the data from the previous layer. The architecture of our CNN is visualized in Figure
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Figure 1: An illustration of the CNN we use for classification and regression. The first
layer takes the image of dimension M×N×K as input and computes a convolution with KC
kernels of size 9× 9, followed by a local response normalization. The next layer performs
max-pooling in a 2× 2 non-overlapping neighborhood. Layer three and four perform a
convolution with KC kernels of size 9× 9 and a 2× 2 max-pooling, respectively. As last
layers of our architecture we implement a fully-connected layer with F neurons, followed by
the output-layer with 1+R neurons.

1 and is motivated by the work of [17]. The input of the network is an image patch of size
M×N ×K, whereas we have normalized the image by subtracting the mean and divided
by the standard deviation of all training images. As first layer we use a convolutional layer
with KC kernels of size 9× 9 and a positive bias term. This results in KC feature maps on
which we apply local response normalization as suggested in [17]. This aids generalization
and can be seen as a kind of brightness normalization. In the second layer we utilize a non-
overlapping max-pooling with neighborhood size of 2× 2. The third layer performs again
a convolution with the same number and size of kernels as the previous one. After another
max-pooling layer, we have a fully-connected layer with F neurons and an output layer with
1+R neurons.

Both, the convolutional layers and the fully-connected layers are linear transformations
followed by a non-linear one. We use a Rectified Linear Unit defined as max(0,a) as non-
linearity in our network. The output layer consists of one sigmoid activation function for
classification yc and of R linear activation functions for the regression yr.

3.1 Training
The biggest difference to existing CNN approaches is the simultaneous classification and
regression. For that reason we minimize a distinctive objective function. For classification,
we utilize the cross-entropy error. For a sample s it reads:

Es,c(θ) =−(ts,c ln(ys,c)+(1− ts,c) ln(1− ys,c)) . (1)

In contrast, for the regression components we use the L2 loss that minimizes the distance
between target and predicted regression values. Again, for a sample s we have:

Es,r(θ) =
1
2
‖ys,r− ts,r‖2. (2)

These two error functions are combined in a weighted sum as follows

Es(θ) = λcEs,c +λrEs,r, (3)
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Figure 2: The structure of a CNN allows for fast inference in HNs. Instead of densely
extracting overlapping patches from the input image and evaluate the network for each patch
separately, we can obtain the same results with a single evaluation of the CNN. If we use the
whole image as input, the convolutional (C) and pooling (P) operations are overlapping for
neighboring patches (blue and orange depicts two 6× 6 patches and brown their overlap).
Only before the first fully-connected layer we have to reshape (R) the values of the feature
maps into a matrix, where each column-vector represents one patch.

where λc and λr are weighting coefficients of the individual error functions and relate to
increased or decreased delta values in the back-propagation algorithm. They can be used to
steer between classification, or regression during learning.

Finally, we learn the model parameters θ by optimizing

argmin
θ

I

∑
i=1

Es(θ) (4)

using the back-propagation algorithm and Nesterov’s Accelerated Gradient [20] in a stochas-
tic setting:

θ̂
τ+1 = µθ̂

τ −η∇E(θ τ +µθ̂
τ) (5)

θ
τ+1 = θ

τ + θ̂
τ+1. (6)

where η is the learning rate and µ is the momentum coefficient. Sutskever et al. [24] showed
that this scheme accelerates learning compared to normal stochastic gradient descent.

The objective function in Equation 3 allows that the values in the single target vectors can
be missing (e.g. a facial feature is occluded). In such cases we set the gradient values of the
involved weights (which only effects connection to the output layer) to zero. We especially
utilize this fact, if a patch does not belong to the foreground. In case of a background patch
we back-propagate only the error values of the class information and the other gradient values
are set to zero.

3.2 Inference
The straight-forward approach for inference in our HN is to densely extract overlapping
patches from the input image and evaluate the network for each patch separately. However,
this implies many redundant operations, as the structure of CNNs allow for a more efficient
inference.

In a CNN neighboring output units share common input units (see Figure 2). For a
convolutional layer we only change the number of feature maps from the input of the layer
to the output. Hence, a convolutional layer does not change the neighborhood relation of
patches in the image. For pooling layers we have to be more careful, because they change
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the size of the patches. However, if the patch size is a multiple of the pooling size, the patch
neighborhood can be related. For example, let’s assume two patches which are x pixels apart.
Having a pooling size of y, after pooling the patches are x

y pixels apart.
For a fast inference, we can present the whole image as input to the CNN. Before the first

fully-connected layer, we rearrange the intermediate result into a matrix, where each patch
is represented as one column-vector. We note that our approach is similar to [22], with the
exception that instead of replacing the fully connected layers by convolution operations with
kernels of size 1×1, we reshape the values.

Finally, for each patch we obtain a classification and a regression y(i, j)=
(
y(i, j),c,y(i, j),r

)T ,
where (i, j) denotes the center of the patch. We only consider regression values of patches,
where the foreground probability y(i, j),c is above an application dependent threshold.

4 Evaluation
In this Section we demonstrate the performance of our proposed HNs on two challenging
computer vision tasks. The first task deals with the head pose estimation from consumer
depth cameras (Section 4.1) and the second task demonstrates the applicability to facial
feature localization in color images (Section 4.2). In both areas derivatives of HFs have
shown great performance and we demonstrate that our approach improves on those results
without the need of handcrafted features.

4.1 3D Head Pose Estimation
In the first task, we evaluate the performance of HNs for head pose estimation in 3D. We
follow the experimental setup of Fanelli et al. [10, 11]. Given a depth image we train a
patch-wise classification and regression model that estimates for a previously unseen image
the head center in 3D and pose in Euler angles.

Experimental Setup For training we randomly extract patches of size 100× 100 pixels
from the depth images (K = 1). For each patch we store if it belongs to the head (ts,c = 1)
or to the background (ts,c = 0). Further, for the regression part we extract the offset vector
between the patch center and the head center as well as the head pose given in Euler angle
(ts,r ∈R6) for head patches. For the two convolutional layers, we train KC = 48 filter kernels
and use F = 2048 neurons in the fully-connected layer. The learning rate η is set to 10−2

and is exponentially decaying with a rate of 0.998. For the momentum coefficient µ we
follow the strategy of Sutskever et al. [24]. Further, we keep the weighting coefficients of
the error functions (λc,λr) equal to 1.0 throughout training. To aid generalization we apply
a small weight decay of 0.0005. An additional usage of Dropout [15] did not lead to a better
performance, but increased the time needed for training. Hence, we do not utilize it in the
evaluation.

During testing we apply our HN on the whole depth image as explained in Section 3.2.
This is equivalent to densely extracting patches on a regular grid from the image and a stride
of 4. A patch is only allowed to vote for a head center and pose if the foreground probability
is large enough, y(i, j),c > 0.99. Using the mean-shift variant of [10, 11] we find a single
mode that defines the resulting head center and pose.

For the head pose estimation experiments we employ the public available Biwi Kinect
Head Pose Database [11]. The database contains 24 sequences of 20 persons, where every
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Figure 3: Accuracy for the head center estimation error (a) and the angle error (b) of the HF
[10, 11], ARF* [21] and our approach. The curves visualize the fraction of correct estimates
over an increasing success threshold. We evaluate our approach on five different splits, where
for one split we randomly select all sequences from two persons as testset and the remaining
sequences as trainset. The solid lines represent the mean over those five runs, whereas the
shaded areas visualize the standard deviation.

sequence consists of ~600 depth images with corresponding annotation (head center in mm
and head pose as rotation matrix). For each depth frame exists also a corresponding color im-
age that is not utilized in this evaluation. We compare our method to the original HFs based
approach [10, 11] and with the combination of Alternating Decision Forests and Alternating
Regression Forests (ARF*) [21]. For those two methods we use the parameter setting and
implementation provided by [21].

Results Following [10, 11, 21], we present the results of our method as the percentage
of correctly predicted head centers and poses over an increasing success threshold. We
experienced that especially the Forest based methods obtain significantly varying results for
different splits of the database. Therefore, we conduct five runs, where in each run we
randomly select all sequences of two persons as testset and use the remaining sequences as
trainset. For a visualization of the mean error of the estimates and the corresponding standard
deviation over those five runs see Figure 3.

We observe that our proposed method clearly outperforms the HF and the ARF* in terms
of head center error and head pose error. For a success threshold of 20mm HNs locate
95.11% of the head centers correctly, whereas the ARF* and the HF achieve only 88.30%
and 82.99%, respectively. In case of the head pose estimation the error of our method is even
less if compared to HFs and ARFs*. For a success threshold of 20◦ our method achieves
88.86% compared to 80.37% (ARF*) and 73.29% (HF). Further, the smaller standard devi-
ation indicates that the result of our approach does not as heavily depend on the split as both
Forest based methods.

In Table 1 we summarize the raw errors of the six single regression variables, the ac-
cumulated errors of the head center and pose estimation, and the fraction of missed head
detections. Again, HNs achieve similar or better results in all single variables, as well as in

Citation
Citation
{Fanelli, Weise, Gall, and Gool} 2011{}

Citation
Citation
{Fanelli, Dantone, Gall, Fossati, and Gool} 2013

Citation
Citation
{Schulter, Leistner, Wohlhart, Roth, and Bischof} 2013

Citation
Citation
{Fanelli, Weise, Gall, and Gool} 2011{}

Citation
Citation
{Fanelli, Dantone, Gall, Fossati, and Gool} 2013

Citation
Citation
{Schulter, Leistner, Wohlhart, Roth, and Bischof} 2013

Citation
Citation
{Schulter, Leistner, Wohlhart, Roth, and Bischof} 2013

Citation
Citation
{Fanelli, Weise, Gall, and Gool} 2011{}

Citation
Citation
{Fanelli, Dantone, Gall, Fossati, and Gool} 2013

Citation
Citation
{Schulter, Leistner, Wohlhart, Roth, and Bischof} 2013



8 RIEGLER et al.: HOUGH NETWORKS

Method X (mm) Y (mm) Z (mm) Center (mm) Yaw (◦) Pitch (◦) Roll (◦) Angle (◦) Missed
HF [10, 11] 6.87 ± 6.67 7.35 ± 5.63 4.69 ± 3.39 12.82 ± 6.81 5.71 ± 6.07 9.73 ± 8.86 5.85 ± 5.18 14.26 ± 10.02 0.05
ARF* [21] 5.47 ± 5.55 6.24 ± 6.08 4.12 ± 3.13 10.76 ± 6.91 5.46 ± 5.76 7.78 ± 7.94 4.99 ± 4.43 12.22 ± 9.04 0.03
Ours 3.80 ± 4.48 4.55 ± 4.03 3.70 ± 3.03 8.13 ± 5.30 3.84 ± 3.73 6.68 ± 6.61 4.33 ± 4.93 9.77 ± 8.04 0.01

Table 1: Mean and standard deviation of the regression errors of HF [10, 11], ARF* [21]
and our approach. The position of the head center is given in mm in 3D space and the Euler
angle in degree. A detection is missed if the estimated head center is 50mm away from the
ground-truth annotation.

the accumulated ones. Further, the fraction of missed detections is smaller when compared
with the HF and the ARF*.

4.2 Facial Feature Localization
In this second task, we evaluate our method for the task of facial feature localization. We
randomly extract patches of size 40× 40 pixels from the 2D training images (K = 3). For
each patch we store the information if it belongs to the head (ts,c = 1) or not (ts,c = 0).
Additionally, for the regression values we include the offset vectors from the patch center
to the L facial feature locations (ts,r ∈ R2L). The other training relevant parameters in this
experiment are kept the same as in Section 4.1.

For testing we apply the trained HN on the whole image, which is equal to separately
inferring the patches extracted from the image with a stride of 4. Further, a patch is only
allowed to vote for a facial feature, if the foreground probability is above a threshold y(1)j >
0.99. With mean-shift we cluster each facial feature point, whereas the foreground proba-
bility is used as an additional weight in combination with the length of the voting vector as
in [6].

Experimental Setup In this experiment we use the Labeled Faces in the Wild (LFW)
dataset [6, 29]. LFW contains facial images of 5,749 persons, where 1,680 have more than
one image in the dataset. The images vary in appearance (lighting conditions, resolution and
quality) and the persons have different poses, gender, race and occlusions. For 13,233 images
annotations of 10 facial features and a discrete head pose (left profile, left, frontal, right, right
profile) exist. We incorporate the 5 discrete head poses via a binary encoding ts,h ∈ {0,1}5

into the target values by extending ts =
(
ts,c, ts,h, ts,r

)T and expand our objective function.
Hence, we utilize the cross-entropy error Es,h(θ) and add it to the final objective function
Es(θ) as weighted term as follows:

Es,h(θ) =−
5

∑
i=1

t(i)s,h lny(i)s,h (7)

Es(θ) = λcEs,c +λrEs,r +λhEs,h. (8)

Results We use the evaluation scheme proposed in [6] and perform a ten-fold cross vali-
dation. For measuring the accuracy, we compute the distance between the estimated facial
feature location and the ground truth annotation as fraction of the inter-ocular distance. The
results of our approach, of Conditional Random Forestss (CRFs) [6] and of Robust Cascaded
Pose Regressions (RCPRs) are presented in Table 4(a).
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LFW
Method F. F. Error. H. P. Error.
CRF [6] 12.0 27.85
RCPR [2] 5.3 -
Ours 6.3 21.83
Human 4.5 -

(a)

COFW
Method F. F. Error.
RCPR [2] 8.4
Ours 14.1
Human 5.6

(b) (c)

Figure 4: Performance of HNs compared to CRFs [6], RCPRs [2] and human performance
on the LFW dataset (a). The facial feature errors are measured as percentage of the inter-
ocular distance an the head pose error states the percentage of falsely classified head poses.
Without any retraining HNs perform also reasonable on the challenging COFW dataset [2].
We visualize 9 of 48 filter kernels of the first layer in (c).

Our method, as others, reach almost human performance, but compared to [6] and [2]
we only need to train one model that is able to jointly predict head pose and facial feature
locations. For the estimation of the head pose we gain even higher values than the CRF and
in contrast to the RCPR we do not rely on an additional face detector.

4.3 Remarks

The above results demonstrate the versatility of our method. Figure 4(c) shows some of the
filters of the first convolutional layer after training on the LFW dataset. The network learned
reasonable color blob and gradient filters that do not depend on a specific dataset. If we
apply the HN of Section 4.2 on the COFW dataset [2] we obtain an average error of 14.1%
without any retraining (see Table 4(b)). Im comparison, RCPR [2] achieves an average error
of 8.4% trained on the COFW dataset and also learning the occlusion state of the features1.

As we have implemented our method utilizing a GPU, there is at the moment no fair
comparison with other methods in terms of runtime possible. Our implementation allows for
10 to 15 frames per second (fps) depending on the image size. If we crop the images as in
[2, 6, 10, 11] we gain up to 20 fps.

5 Conclusion

We presented Hough Networks (HNs), a novel approach that combines the principle of
Hough Forests (HFs) with the Convolutional Neural Network (CNN) model. The method
performs a simultaneous classification and regression on image patches. In contrast to Ran-
dom Forests (RFs), a CNN is able to learn higher-order feature representation and does not
rely on handcrafted features. Further, its architecture allows for fast inference if the patches
are densely extracted along a regular grid. We evaluated our method on two computer vision
tasks: head pose estimation and facial landmark localization. In both cases we achieved
state-of-the-art or better results. In future, we plan to investigate the applicability of HNs to
body pose and articulated hand posture estimation.

1We only evaluated on the 10 facial features that the LFW and COFW dataset have in common.
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