HOFER ET AL.: SEMI-GLOBAL 3D LINE MODELING 1

Semi-Global 3D Line Modeling for
Incremental Structure-from-Motion

Manuel Hofer Institute for Computer Graphics and
hofer@icg.tugraz.at Vision

Michael Donoser Graz University of Technology
donoser@icg.tugraz.at Austria

Horst Bischof
bischof@icg.tugraz.at

Abstract

Structure-from-Motion (SfM) approaches, which are conventionally based on local
interest point matches, tend to work well for richly textured indoor- and outdoor envi-
ronments. However, in less textured scene areas the density of the resulting point cloud
suffers from the lower number of matchable interest points. This significantly affects
subsequent computer vision tasks like image based localization, surface extraction or
visual navigation. In this paper, we propose a novel 3D reconstruction approach that in-
creases the amount of 3D information in the reconstruction by exploiting line segments as
complementary features. We introduce an efficient and effective semi-global approach,
which takes into account local (per 2D line segment) as well as global (graph cluster-
ing) 3D line hypotheses constellations. Our approach outperforms the state-of-the-art in
terms of accuracy, with comparable runtime.

1 Introduction

Recovering 3D information from a single moving camera is a widely studied field in the
area of computer vision [1, 9, 21, 23, 24]. Most of these Structure-from-Motion (SfM)
approaches are based on so-called interest points (e.g. corners) in images, which can be
accurately matched using powerful descriptors like SIFT [18]. Hence the output is usually
a sparse 3D point cloud along with the camera poses for all successfully integrated images.
While previous methods were only able to perform pose estimation and 3D reconstruction
in an offline way, there are now more and more incremental SfM approaches available [13,
20, 27, 28].

Since conventional SfM approaches are based on interest points, the distribution of the
obtained 3D points is usually not uniform throughout the whole reconstruction. This is due
to the fact that such interest points are usually located on highly textured areas, but not on
homogeneous regions or along edges. Since the result of SfM pipelines is often used as basis
to generate a more dense result or for localization and navigation tasks, it would be beneficial
to generate additional complementary 3D information in an efficient way. From a SfM point
of view, using line segments is especially interesting for urban and indoor environments,
where linear structures frequently occur. While interest points are located mostly on richly
textured image locations, line segments usually mark the boundaries of objects. Hence,
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() (d)

Figure 1: (a) An example image from the EIFFEL sequence. (b) The sparse 3D reconstruc-
tion result obtained by a conventional point-based SfM pipeline [13]. (c) The pointcloud
combined with reconstructed 3D lines by our proposed method. On the right we can see an
incrementally generated 3D mesh with (d) the 3D points only or (e) both points and lines. As
we can see, the usage of complementary features significantly improves the completeness of
the resulting 3D model in both cases.

incorporating such features in an online SfM pipeline to create 3D line segments naturally
leads to a more complete 3D representation of the underlying scene, which is beneficial for
all kinds of subsequent applications.

We propose a novel approach which generates 3D line models on-the-fly, based solely
on the output of a conventional incremental SfM pipeline. The goal of our method is to gen-
erate additional complementary 3D information to improve the sparse 3D representation of
the scene. In this approach, we consider the SfM pipeline as a black box and do not interfere
with the pose estimation procedure. We show that 3D line reconstructions can be obtained
very efficiently by using purely geometric constraints, or by additionally incorporating ap-
pearance and collinearity information. Our approach enables accurate 3D reconstruction of
texture-less as well as textured man-made objects, including complex structures such as wiry
objects. Figure 1 shows a reconstruction result obtained by an incremental SfM system [13],
followed by a surface generation method [14], with and without the usage of additional 3D
line segments obtained by our proposed method. As we can see, additional 3D information
significantly improves the completeness and overall appearance of the resulting reconstruc-
tions.

Conventional line-based 3D reconstruction methods usually require some sort of explicit
one-to-one line-segment matching (e.g. by using normalized cross correlation scores [2, 15]
or line descriptors [4, 5, 10, 17, 29, 30, 31]), or very specific scene structures [22]. Despite
the reasonable matching scores when using line descriptors, their patch-based nature is not
beneficial when segments from very complex structures have to be matched. A prominent
example are wiry structures such as power pylons, cell phone towers or scaffolds. For this
kind of objects, patch based line descriptors fail to achieve a reasonable performance, since
we have to deal with highly viewpoint depending surroundings. While such structures usu-
ally contain a low amount of distinctive interest points as well, it is usually possible to at
least compute the correct camera poses with traditional SfM methods (e.g. due to correct
feature matches on the ground or behind the wiry object). This is also exploited by the
current state-of-the-art in incremental line-based 3D reconstruction [12], which builds up on
appearance-less 3D reconstruction methods based on given camera poses [11, 16]. In [12] an
incremental SfM is combined with a purely geometric 3D line segment clustering approach.
The core principle is to compute a potentially large set of 2D line segment matches among
neighboring images using weak epipolar constraints, and to compute 3D line segment hy-
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potheses for all of these matches. In contrast to related offline approaches [11, 16], where
only the best hypothesis for each 2D line segment was kept for the final clustering, in [12]
all 3D hypotheses are treated as equal and a direct clustering in space is done whenever two
hypotheses are closer than a certain grouping radius.

Despite the fact that the pipeline of [12] delivers visually pleasant results, there is always
a trade-off between accuracy and completeness of the resulting 3D line model. On the one
hand, choosing a small spatial grouping radius ensures an outlier free result, but depending
on the triangulation uncertainty and the configuration of the camera poses it is often the
case that several relevant parts of the object are not captured in the reconstruction. On the
other hand, increasing the grouping radius quickly leads to noisy reconstructions with a
significantly higher amount of gross outliers, which weakens all kinds of post-processing
tasks. The problem is that direct clustering does not reflect the global constellation of the
hypotheses. Hence, it might be possible that a cluster emerges at the wrong location in space
just by chance.

To overcome these drawbacks we propose a novel reconstruction approach (denoted as
semi-global line modeling), which takes into account local (per 2D line segment) as well as
global hypotheses constellations (graph clustering), instead of making only greedy decisions.
Furthermore, we will show how we can adapt the idea of deriving a spatial direct grouping
radius from the image space to formulate affinities for potentially corresponding hypotheses.
Additionally, we extend the epipolar geometry based matching procedure to include distant
line segments, which might be collinear with an already matching segment. This enables us
to jointly optimize non-overlapping line segments, which have emerged from the same 3D
line in space (e.g. window frames). As a final contribution, we introduce a boosted version
of the HSV histogram based line matching method by Bay et al. [3], and show how it can be
optionally utilized to further refine the set of pairwise matches, even for wiry objects.

In Section 2 we will introduce some notation and lay the theoretical foundation, before
we explain all necessary computation steps in more detail. We will conclude with extensive
experimental results in Section 3.

2  Semi-Global 3D Line Modeling

Given an unordered set of images I = {I;,---,Iy} and the corresponding camera poses C =
{Ci,---,Cn} (obtained by any conventional SfM pipeline), our goal is to reconstruct an
accurate and complete 3D line model. Furthermore, we define a set Iy (i) C I\{I;} for each
image [;, which contains its M nearest visual neighbors (e.g. the M images with the highest
amount of common worldpoints with ;). Additionally we assume that we have a set of 2D
line segments L; = {/; 1,--- , i o, } per image I;, where n; refers to the number of line segments
in /; i

Our method consists of several steps. In Section 2.1 we show how to compute matches
between 2D line segments across neighboring images, to generate a potentially large set of
3D line hypotheses. In Section 2.2 we show how to select the locally best 3D hypothesis
for each 2D segment, to reduce the number of hypotheses to be evaluated. In Section 2.3
we introduce the graph-based 3D hypothesis clustering procedure to merge corresponding
hypotheses together. Finally, we discuss how to compute incremental reconstruction results
in Section 2.4.

2.1 3D Line Hypotheses Estimation

To compute an accurate 3D line model, we first need to match potentially corresponding 2D
observations (2D line segments) across neighboring image pairs. Since we cannot expect
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(a) Wiry structure (b) Solid structure

Figure 2: The red segment on the left-hand side denotes an exemplar line segment from an
image I;. On the right we can see the corresponding epipolar lines (blue) along with the
potential matches in /;. The yellow segments fulfill the geometric matching conditions only,
while the green segments are also similar in color. In both cases, the number of potential
matches has been significantly reduced.

to compute outlier free one-to-one matches when complex objects (e.g. wiry structures)
are present, we compute multiple matching hypotheses for each line segment. To ensure
a high recall with a reasonable precision, we use simple epipolar matching conditions and
optionally incorporate appearance information and collinearity constraints. We first compute
binary matching matrices M; ; (n; x n;) for all image pairs /; and I; € (i) by using the same
geometric matching constraints as presented in [12]. These constraints check that (a) at
least one of the endpoints of /; ,, must be close to its nearest epipolar line corresponding to
the other segment, and (b) the orientation must be correct. Despite the high recall of this
purely geometric matching scheme, the precision can be arbitrarily low. To improve the
line matching performance, we adapt a line matching method by Bay et al. [3], recently
revisited in [25]. The algorithm is based on HSV color histograms and does not require a
patch-based support region. Therefore, we compute two separate HSV color histograms ‘I’{jn
and ‘I’l’fn (left and right) for each line segment /; ,, using two stripes directly adjacent to the
line segment on both sides. In contrast to the similarity metric proposed in [3], we use the
faster to compute Jensen-Shannon divergence (JSD) as a similarity measure, defined as

‘Pl(x) _ lPl +lP2

d(wl,%)zi):(logz< A(x))%<x>+zog2(‘f(fj;))%(x)), a=T0

X

where x stands for the histogram bins. To be more robust against illumination changes, we
apply a certain amount of histogram smoothing. Therefore, we use the Euclidean distances
between the histogram bins for a soft assignment to the actual bin and its k nearest neigh-
bors. Since it is often the case that the color profile is only discriminative at one side of
the segment, we compute two separate similarity measures for both sides. We then define
the similarity dgin(lin,!jm) to be the minimum of these two measurements. Non-zero en-
tries in M; j, which correspond to segment pairs where dsim(lin, 1 j7m) > tsim are subsequently
removed. Figure 2 shows a comparison between the purely geometric matching and an ad-
ditional verification using the modified histogram matching. As we can see, the procedure
significantly reduces the number of potential matches.

Due to the epipolar matching constraints, line segments that are located on the same
infinite line in space but do not have a spatial overlap (e.g. aligned window frames) would
not be matched together. To overcome this drawback, we incorporate potential collinearity
information. We therefore create a binary collinearity map P; (n; X n;) per image, which is
set to one if the corresponding 2D segments have a maximum distance smaller than o, and
are visually similar (using their HSV histograms). Now, for each pair of segments /; , and
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lj,m that are currently not matching (i.e. M; j(n,m) = 0), we check if there exists a potentially
collinear segment /; , which does (i.e. M; j(n,/m) =1 and P;(m,m) = 1). If so, we consider
lin and [;,, to be matching as well and update the matching matrices accordingly. This
procedure enables us to match separate line segments from the same 3D line together, with
minimal additional effort.

The aforementioned matching procedure gives us a potentially large number of pairwise
matches. To verify which of them actually belong together (i.e. which of them are observa-
tions from the same physical 3D line structure), we transform them into the 3D space and
apply spatlal clustering. Given the pairwise matching matrices M; ; for all image pairs (f;,1;)
with I; € Iy (i), we compute a 3D line segment hypothesis // ]m for each matching pair, by
triangulating the corresponding 2D segments, as shown in [11, 1 12]. Since we also have spa-
tially distant matches based on the collinearity estimation, we compute two separate collinear

3D line segments, s; ;" and s'}}". The hypothesis ;}" is then defined as /" = {s:']m, s;ff;-"}.

In general, we cannot Verlfy or discard single hypotheses at this pomt. Though, as stated
in [12], we can estimate a quality measure 6 based on the visibility of a triangulated hypoth-

esis as
0 (hlj ) =1 —mqin{

where sﬁj and c_q> are the unit directional vectors of the triangulated segments and the optical
axes of the cameras C; and C; respectively. This formulation assigns a high quality value 6
to hypotheses, that have a large angle between the 3D line and the optical axis of one of
the supporting cameras. Hypotheses with a low quality 6 are in general less likely to be
correct because the contributing 2D line segments in the image space appear very small,
in contrast to their 3D equivalent. Even though such hypotheses could also be correct, the

triangulation quality is usually very poor for such cases. Therefore, it is beneficial to discard

n,)z T —
Sij ) "Ca

}, qg€ii,j} (2)

low-quality hypotheses (e.g. 0 (h;’;") < 0.5) at this point. Even though this is not strictly
necessary when using our semi-global method, it is strongly recommended since the runtime
is decreased while the results are not negatively affected. Finally, all hypotheses that remain
valid are put into the hypotheses set H. For invalidated hypotheses we set the corresponding
entries in the matching matrices M; ; to zero. Given this information we can now proceed to
the task of hypothesis verification and clustering.

2.2 Local Hypothesis Selection

Given the hypotheses set H we could directly apply a spatial clustering procedure, as in [12].
However, since we usually have several outlier matches (and hence, outlier hypotheses) due
to our soft matching constraints, this is not very beneficial and might easily result in outlier
hypotheses being clustered together. To avoid this, we want to find the most plausible 3D
hypothesis h* for each 2D line segment /; ,, based on the spatial proximity among all its 3D
hypotheses. To find this hypothesis, we first define a hypotheses subset H;, = {1;’" € H}
for each 2D segment /; ,. Furthermore, we compute a subset d)l_n for each hypothesis h € H; ,
by

o7t (hy={h€Hy | dp(hh)<r}, 3)

where d3p(h, fz) stands for the maximum distance in space between two hypotheses & and /,
and r; denotes a local spatial regularization threshold with respect to image /;. The subset
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q):jl(h) can be seen as a nearest neighbor set for 4, which includes all other hypotheses from
H; , that are within a certain spatial radius r;, and A itself (since dsp(h,h) = 0). Motivated
by [12], we estimate r; by shifting the 2D segment /; ,, (corresponding to a hypothesis /) by
a fixed value o in the image space, and calculate the maximum distance between / and the
plane defined by the the camera center of C; and the camera rays through the shifted segment
endpoints. We do the same for the second segment, /; ,,, and define r(h) to be the average
of these measurements. We then take the median over all r(h) for which & references I;,
to obtain the local spatial regularization threshold r;. We now compute the most plausible
hypothesis A4;,, for [;,, as

i, = argmax (p(9]} (1)) ), )
heH,

where p(¢," (h)) is a simple counting function, which returns the number of different cam-
eras supporting the hypothesis subset ¢ (h). We denote this as potential cluster size (PCS).
This procedure is based on the idea that triangulated segments corresponding to correct
matches will always be close in space, while wrongly estimated 3D segments can be at
an arbitrary position. Hence, at the correct position we can connect the largest number of
cameras with minimum effort.

We can now define the set of clusterable hypotheses H* C H, which includes h:n for
each line segment /; ,. To verify clustered hypotheses later on, we require a validity criterion
based on a predefined minimal cluster size o.. This parameter specifies how many different
cameras must support a hypotheses cluster to be considered as valid. Since clusters with less
than & cameras can never be valid, we only consider a hypothesis 4}, for clustering if its
PCS is at least o. We call this procedure local hypothesis selection, because the selection
is only based on the hypotheses set H; ,, which only holds hypotheses resulting from valid
pairwise matches with respect to the 2D segment /; ,. Hence, it does not consider the global
hypotheses constellation. This speeds-up the selection process and also prevents that wrong
hypotheses for other segment pairs influence the decision procedure for /; ,,.

2.3 Hypotheses Clustering

Now that we have a set of 3D line segment hypotheses, which are obtained from pairwise 2D
line segment matches, we want to cluster corresponding segments together and simultane-
ously remove remaining outlier hypotheses. To prevent a greedy direct clustering procedure,
which does not reflect the global constellation of the 3D hypotheses, we propose to use a
graph based clustering approach.

Graph-based clustering requires a pairwise affinity matrix, consisting of similarities be-
tween the 3D line hypotheses. In our case, we exploit spatial proximity as similarity measure.
Since we may not have a proper scale information in our reconstruction pipeline, we use the
spatial regularization thresholds r; (obtained from the image space) and the so called span
(s (h) < r;) of a hypothesis to define pairwise affinities between hypotheses. The span is ba-
sically a local distance measure, which quantifies the uncertainty of a 3D hypothesis based
on its neighboring hypotheses. It is defined as the minimum spatial distance we would have
to go to directly cluster together enough hypotheses, such that the number of contributing
cameras is at least o¢. Note that this is not a parameter to be chosen but which defines itself
based on the uncertainty of the triangulation and the matching scores. We now compute a
set D which holds all potentially matching hypotheses tuples as

D= {(hfn,hj‘m) | M;j(n,m)=1Adsp(hj,,h7,,) < r,-}. 4)

Lny'tj,m
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This ensures that we only compute the spatial distances between hypotheses which contain
residuals that are matching in image space as well. We can now transform this set of pairwise
matches into an affinity matrix A

1 if d < sq(ht,)
. . Ty(in —d . % )
A(y(i,n),y(j,m)) = (W) if sq(hf,) <d <ryin (6)

else

where each row and column correspond to a hypothesis #* which is part of at least one
tuple in D. The function ¥(-) is a mapping function which assigns row and column indices
for A uniquely to hypotheses in D, and d = d3D(hl-*7n,hj7m). Since it might be possible that
different 2D line segments /; , (from possibly different views I;) have the same 3D hypothesis
as their personal best, we define the spatial regularization threshold for this hypothesis r,; ,)
as the average over all values r;. With this information at hand, we apply the efficient graph
based clustering procedure by Felzenszwalb and Huttenlocher [8]. Despite the fact that
their approach was originally designed for segmentation purposes, it can be used for any
kind of clustering where pairwise affinities can be computed [7]. The method is completely
unsupervised and automatically identifies the number of clusters. The only required user
input is a region preference parameter. Since we do not want to put any a priori restriction
on the cluster sizes, we set this value to 2.

After clustering, we merge all hypotheses within a detected valid cluster (number of
supporting cameras is at least &). This is done by using the PCA based approach introduced
in[11, 12, 16]. Since we do not want to merge collinear segments in 3D to one large segment
(because the gaps between them might be physically reasoned), we evaluate the individual
3D segments along the line based on the 2D observations in the image space.

Up to this point we have assumed that all images and camera poses are given right from
the start. As a final step, we discuss how our proposed method can be used to create incre-
mental results.

2.4 Incremental Reconstruction

Since we want to integrate our method into any given incremental SfM system, we have to
start from an empty image set /. We then simply perform all aforementioned steps whenever
a new image [; and camera pose C; is provided by the underlying SfM pipeline. At the
beginning (when |I| < @) it does not make sense to perform the hypothesis selection and
clustering procedure, but the matching and triangulation can off course be done. Given that
we only use the M nearest neighbors for the 2D line segment matching, we always have a
limited number of hypotheses for clustering (i.e. all selected hypotheses which have residuals
in the current scope I; U [y (i)).

Since we already have a partial reconstruction (after several clustering steps when |I| >
a), some of the hypotheses may have already been clustered before. Hence, such hypotheses
have more than two residuals and also more than two triangulated segments. This informa-
tion is only used during the hypotheses merging (after the clustering), but not during the
hypothesis selection. This is due to the fact that the potential cluster size is computed for
each contributing 2D segment individually, which does not take the actual cluster size of a
hypothesis into account. We chose this representation to allow the system to correct wrong
clusters at a later point, e.g. when more information is available.

To keep the per image processing time approximately constant (especially for large image
sequences), we have to remove unpromising hypotheses from time to time. Therefore, we
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Figure 3: Reconstruction results for the Timberframe sequence (240 images). (a) Example
image. (b) The original result by [16] (offline, runtime of several hours), RMSE = 0.291. (¢)
The result by [11] (offline, runtime of 45 minutes), RMSE = 0.094. (d) The result by [12]
(online, 5.7 minutes) RMSE =0.196. (e) Our reconstruction with appearance and collinearity
constraints enabled (online, 6.9 minutes), RMSE = 0.095.

compute a condition number p(i) for each image I;, which holds the number of matched
visual neighbors that have been added to the reconstruction after /;, We remove invalid
hypotheses for which the average condition number among their supporting views is bigger
than o.

3 Experimental Results

We evaluate our proposed method on several challenging datasets. As line segment detec-
tor we use the LSD algorithm [26], and as incremental SfM pipeline we use [13] (which
ensures a fair comparison to the the only existing incremental method [12]). The test sys-
tem is a standard desktop PC. All parameters are initialized with default values and remain
unchanged for all experiments. For the appearance-based matching refinement we set the
smoothness parameter k = 7, ty,, = 0.5, and the number of bins is 166 (see [3]). Further-
more, M = 10 and o = 4. The only parameters which need adaptions are the uncertainty
o, and the collinearity threshold o,. To use one value for all experiments we scale the im-
ages down to a fixed size (FullHD resolution). Choosing a higher value for ¢ is especially
beneficial for the estimation of the best hypothesis, since the probability of missing some
information is decreased. Though, choosing ¢ too big may lead to wrong estimates, since
outliers may gain more importance. We therefore set ¢ = 10 by default. Since it does not
make any sense to set 6, > o, we also fix 6, = ©.

3.1 Experiments

To demonstrate the capabilities of our proposed algorithm, we performed several quantitative
and qualitative experimental evaluations. As a quantitative evaluation we used the synthetic
Timberframe ' dataset from [16], since there is a groundtruth CAD model available. Figure
3 shows our result in comparison to related state-of-the-art methods [11, 12, 16].

As can be seen, our proposed method achieves more accurate results than a previous in-
cremental approach [12] (RMSE 0.095 vs. 0.196), while the runtime is not largely increased
(6.9 vs. 5.7 min). That is off course due to the non-greedy nature of our approach and the in-
corporation of collinearity information. The accuracy with respect to the ground truth CAD
model is almost as high as for the offline approach [11] (RMSE 0.095 vs. 0.094), which
achieves the highest accuracy among the competitive algorithms, but with a significantly
higher processing time (6.9 vs 45 min).

Uhttp://www.mpi-inf.mpg.de/resources/LineReconstruction
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[12l,0=1 [12], 0 =5 Ours

Sequence || #clus. | #seg. [ @res. | ot || #clus. | #seg. | @res. | ot || #clus. | #seg. | ores. | ot
PYLON 1281 | 1281 5.5 1.8 2657 | 2657 8.6 1.6 1075 | 1346 | 219 | 1.5
HOUSE 1524 | 1524 6.4 1.2 2268 | 2268 9.3 1.1 483 991 419 | 1.8
EIFFEL 204 204 5.0 0.9 943 943 8.4 0.8 283 366 202 | 1.1
TIMBER 2355 | 2355 7.8 1.4 3436 | 3436 | 149 | 1.2 1342 | 1866 | 30.9 | 1.4

Table 1: Relevant numbers for the used test sequences. #clus. stands for the number of 3D
clusters, #seg. is the number of individual 3D line segments, @res. is the average number of
residuals, and @t is the average computing time per image (in seconds).

We further qualitatively compare our approach to [12] on three challenging test se-
quences. The reconstruction results are shown in Figure 4, the relevant numbers (e.g. run-
time, residuals, ...) in Table 1 (including the Timberframe dataset from above). We compare
our method to two versions of [12] with 6 = 1 (default) and o = 5, which roughly corre-
sponds to the spatial distance for which the affinities in our approach are above 0.5. As can
be seen, our method produces much cleaner results while the runtime is not significantly in-
creased (around 0.2 sec per image on average). The most significant improvement is the very
high number of average residuals per cluster (highlighted in Table 1). As can be seen, our
method manages to create much bigger clusters, which explains why the number of individ-
ual 3D segments is usually much lower compared to [12] with a similar clustering distance
(even though no relevant parts of the objects are missing). This is off course also a result of
the incorporation of collinearity information.

A demonstration how the various steps of the matching procedure affect the results and
the runtime is shown in Figure 5. As can be seen, the visual appearance of the results does
not vary significantly while both runtime and average residual number are strongly affected.
The usage of collinearity information enables us to create much bigger clusters (approx.
50% bigger), while the runtime can be significantly higher (especially when no appearance
information is used). The usage of both collinearity and appearance information is in general
a good compromise between runtime and completeness of the obtained 3D models.

4 Conclusion

We have proposed a novel method to generate incremental 3D line models based on the
output of an online SfM pipeline. We have shown that using a semi-global approach rather
than direct greedy clustering significantly improves the accuracy of the obtained models,
with approximately the same runtime. Furthermore, the usage of appearance and collinearity
information improves the matching results even when wiry structures are to be reconstructed.
The relaxation of the uncertainty parameter ¢ allows to generate more complete 3D models
with the same (or even less) images, which is especially beneficial when the proposed method
is used within a time-critical SLAM [6] system (e.g. to create trackable 3D line models on-
the-fly). In the near future, we want to investigate the usage of other edge-based features
(e.g. curves [19]) since not all object boundaries can be approximated with line segments.
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Figure 4: Reconstruction results for the PYLON [11, 12], HOUSE and EIFFEL sequences.
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Figure 5: Reconstruction results for the PYLON sequence. (a) Geometric matching only,
(b) Geometric + Appearance, (c) Geometric + Collinearity, (d) Geometric + Appearance +
Collinearity.
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