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Abstract

Image segmentation is known to be an ambiguous problem whose solution needs an
integration of image and shape cues of various levels; using low-level information alone
is often not sufficient for a segmentation algorithm to match human capability. Two
recent trends are popular in this area: (1) low-level and mid-level cues are combined to-
gether in learning-based approaches to localize segmentation boundaries; (2) high-level
vision tasks such as image labeling and object recognition are directly performed to ob-
tain object boundaries. In this paper, we present an interesting observation that performs
image segmentation in a reverse way, i.e., using a high-level semantic labeling approach
to address a low-level segmentation problem, could be a proper solution. We perform
semantic labeling on input images and derive segmentations from the labeling results.
We adopt graph coloring theory to connect these two tasks and provide theoretical in-
sights to our solution. This seemingly unusual way of doing image segmentation leads to
surprisingly encouraging results, superior or comparable to those of the state-of-the-art
image segmentation algorithms on multiple publicly available datasets.

1 Introduction
Image segmentation is a fundamental and widely studied problem in computer vision [2, 7,
14, 37]. Continuous efforts have been made to improve the performance of segmentation
systems to match human capability [2]; however, it is generally acknowledged that solving
the segmentation problem with low-level cues alone might not be possible [27]. There has
long been a discussion on solving this seemingly low-level task with high-level knowledge
[9], but a clear and concrete solution is not yet available.

Accepting non-perfect segmentation results allows one to use cutting-edge systems [7,
14, 37] to generate over-segmentations (or superpixels) in helping higher-level vision tasks
such grouping and labeling. Some representative methods include [18, 30, 34, 39] for object
recognition, image labeling, and parsing.
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Figure 1: The difficulty in segmentation due to the lack of semantic knowledge: the two
patches are from different segments but share similar low-level features, while the bottom
two patches belong to the same segment despite of their distinct appearances.

The task of semantic labeling, considered as a high-level one, has been heavily studied
recently in computer vision [19, 38]. During training, one is given a set of images, together
with their corresponding per-pixel labels where the total number of label category is pre-
defined; during testing, learned models are used to predict per-pixel label in each image.
Arguably, research domain along this vein is called “closed universe” [39] in which expand-
ing the labels to include more categories can be a difficult task. Nonparametric models were
instead proposed to perform label transferring [25, 39] in which large public datasets such
as LabelMe [35] are utilized to break out of the “closed universe”. Instead of training class-
specific classifiers, these nonparametric models transfer semantic information to a test im-
age from similar training images. The label transferring process is proved effective and also
adaptive to new images. However, the problems of these methods include computational
burdens in retrieving similar images and the limitation in generalization when processing
images of large variations.

As shown in Figure 1, two main issues (both due to the lack of semantic understanding)
contribute to the main difficulty in image segmentation: (1) regions of different appearances
might belong to the same segment, (2) and different image segments might have identical
local appearances. In this paper, we propose to perform image segmentation in a reverse
way. Unlike previous systems where either specific high-level information (e.g., human
faces, text, shape) are integrated into segmentation systems [9, 41] or segmentation results
are used as a precursor for high-level vision tasks [30, 34], our method takes a path of a high-
level segmentation approach: at first per-pixel labeling of semantic categories is performed,
followed by a procedure to obtain segmentations with per-pixel labels got discarded in the
end. We are inspired from the observation that semantic labels give means of differentiating
similar pixels and grouping dissimilar pixels. These labels can be viewed as a quantization
of the solution space of segmentation, and the derived segmentations are mostly consistent
even when the semantic level labels are not completely correct. For example, in Figure 2, a
mammal is classified as a bird because of their similarity in color and texture, but the derived
segmentation is mostly correct.

Here we bring a novel top-down view towards segmentation and demonstrate our idea on

Citation
Citation
{He, Zemel, and Carreira-Perpin{á}n} 2004

Citation
Citation
{Shotton, Winn, Rother, and Criminisi} 2006

Citation
Citation
{Tighe and Lazebnik} 2010

Citation
Citation
{Liu, Yuen, and Torralba} 2011

Citation
Citation
{Tighe and Lazebnik} 2010

Citation
Citation
{Russell, Torralba, Murphy, and Freeman} 2008

Citation
Citation
{Cremers, Rousson, and Deriche} 2007

Citation
Citation
{Tu, Chen, Yuille, and Zhu} 2005

Citation
Citation
{Mori, Ren, Efros, and Malik} 2004

Citation
Citation
{Russell, Freeman, Efros, Sivic, and Zisserman} 2006



WU, ZHU, TU: REVERSE IMAGE SEGMENTATION 3

(c)(a) (b)

River Boat

Road

Person

Building
Hill

Sky

BirdBush

Plant

Floor

Figure 2: Example images and their semantic labeling and image segmentation results. Even
if the semantic labels are not perfect, our pipeline could obtain satisfactory segmentation
results.

both parametric and nonparametric formulations, resulting in simple, generic, and efficient
algorithms. In particular, we find that parametric image labeling methods might be suitable
for the task of image segmentation. Parametric models are usually fast to train and test; a
certain level of knowledge abstraction, which is only available in parametric models, is often
needed in order to have good generalization capability. Although a parametric approach
using a fixed number of categories is considered as a “closed universe” solution, we show,
both theoretically and empirically, that the semantic knowledge extracted from this “closed
universe” might be a useful direction to obtain accurate segmentation results. Note that
graph coloring theory can provide heuristics for the number of semantic categories needed.
We validate the effectiveness of our approach on standard benchmarks without retraining,
which demonstrates strong resistance to the dataset bias problem [40].

2 Related Work
Image segmentation is an important problem. Some popular algorithms include Mean Shift
[7], Normalized Cuts [37], and graph-based methods [14]. Recent efforts can be divided into
different categories: methods to learn more reliable affinities for spectral segmentation [23],
effective ways of performing cue combination [2], and saliency-guided segmentation [12].

For semantic labeling or class segmentation, popular methods include those estimating
pixel-wise class labels with contextual information [19, 38], those using predefined super-
pixels or segmentation regions [17, 18], and those predicting the boundaries or bounding
boxes of the objects in images [5]. Most of these methods learn classification models and
are therefore restricted to predefined classes, or so-called “closed universe” [39]. Recently,
some nonparametric approaches have also been proposed to break out of the “closed uni-
verse” [25].

Some recent approaches [15, 21, 23] learn internal structures, especially learning affinity
functions between pairs of pixels or superpixels, for images segmentation. Ren et al. [33]
adopt a classification model for image segmentation. Nonetheless, their system focuses on
evaluating the goodness of image-level segmentations via local features. Cheng et al. [6]
learn a classifier to discriminate unstructured objects, or backgrounds, but they do not attempt
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to learn foreground objects. Further, none of them utilize the power of semantic knowledge
from images.

A recent study [18] investigates holistic image understanding. However, their emphasis
is on the correlations among various vision tasks. Neither do they focus on unsupervised
segmentation, nor do they discuss the idea of incorporating high-level knowledge into low-
level vision tasks. Perhaps the most relevant work is [24], which also exploits high-level
semantic information for other vision tasks. However, the semantic knowledge is used there
to assist depth estimation, while our work addresses segmentation.

3 From Labeling to Segmentation

A straightforward way of performing image segmentation by labeling methods is to first fol-
low the nonparametric approaches [25, 39] to find the most similar images, transfer semantic
information, and then discard the labels. The segmentation results obtained this way are al-
ready acceptable, although it takes several minutes to process a single image. In this section,
we discuss our approach which also uses high-level semantic knowledge for general purpose
segmentation, but in a parametric way. Our algorithm is simple but generic, and produces
convincing results superior or comparable to those of multiple state-of-the-art algorithms.

3.1 Learning Generic Semantic Knowledge

Recently Tighe et al. released LM+SUN dataset as part of the SuperParsing project [39],
which combines the SUN dataset [44] with a complete download of LabelMe [35]. The
dataset consists of 45,676 images, of which 21,182 are indoor and 24,494 are outdoor. They
also used manual synonym correction to obtain 232 semantic labels.

The LM+SUN dataset can serve as a large-scale semantic knowledge base, which pro-
vides generic high-level information. To utilize this knowledge, we train a discriminative
multi-class classifier on top of the superpixels of the outdoor images in the LM+SUN dataset,
which we found to be sufficient for the task of general image segmentation.

Specifically, we first assign each superpixel a semantic label. Following [39], a super-
pixel is associated with a semantic class if and only if at least half of the superpixel overlaps
with a ground truth segment mask with that label. Then, according to the label frequencies
on superpixels, 50 most frequent classes are picked out. For each class, 20,000 superpixels
of the class are sampled as positive training examples, and another 20,000 superpixels un-
labeled or with other class labels are randomly drawn as negative examples; a linear SVM
[13] is then trained on the data. These classifiers are generic and applicable to any images
including those not in the dataset.

In segmentation, each superpixel is tested by all learned classifiers to obtain a vector of
confidence values. Perhaps the easiest way to group the superpixels into different segments
based on these values is to assign each superpixel the label whose corresponding classifier
reports the highest value, and then directly discard the labeling information. The experiments
show that such a simple approach has already achieved encouraging results.

The LM+SUN dataset is designed to be generic enough to break out of the “closed uni-
verse” [35], which indicates that the knowledge learned from it should be comprehensive and
widely applicable. In other words, the performance of our approach will not be restrained
by the limitation of the training data. Further, the models, once learned, could be directly
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applied to other datasets including popular segmentation benchmarks. This makes our ap-
proach, although seemingly supervised, ould effectively segment natural images without
re-training, in this sense resembling unsupervised methods.

3.2 Our Formulation

Bottom-up unsupervised segmentation algorithms with only low-level features may not be
able to capture the semantic knowledge which is needed to achieve a satisfactory segmenta-
tion [9, 41]. Similarly, purely using top-down semantic knowledge is probably not enough
for reasonable segmentation results. For instance, properly incorporating low-level cues
helps us to divide multiple connected instances of the same category to different segments.
Besides, as it is generally acknowledged that context is necessary for satisfactory parsing
results [38], we would also like to enforce contextual constraints to refine the results. To this
end, we formulate the problem under the framework of Conditional Random Fields (CRF).
Constraints that allow us to reduce over/under segmentations near region boundaries are en-
coded as pairwise edge potentials.

Denoting S = {si} as a set of superpixels and G(S,E) as an adjacency graph, the proba-
bility of class labels ccc = {ci}, given the set S and weights λ ,µ , can be formulated as

− log(Pr(ccc|G;λ ,µ)) = ∑
si∈S

Φ(ci|si)+ ∑
(si,s j)∈E

[λΨ(ci,c j)+µΘ(ci,c j|si,s j)]. (1)

The unary potentials Φ are directly defined as the probability output of our multi-class
classifier: Φ(ci|si)=− log(Pr(ci|si)). Similar to [39], the first binary potentials Ψ are defined
as probabilities of label co-occurrence: Ψ(ci,c j) = − log[(Pr(ci|c j)+Pr(c j|ci))/2] · δ [ci 6=
c j], where Pr(ci|c j) is the conditional probability of one superpixel having label ci given that
its neighbor has label c′, estimated from the training set, and δ [·] is the indicator function.

The second pairwise terms Θ are similar to those in [17, 38]

Θ(ci,c j|si,s j) =

(
W (si,s j)

1+‖si− s j‖

)
·δ [ci 6= c j], (2)

where ‖si− s j‖ is the L2 difference between the feature vectors of superpixels si and s j,
and W (si,s j) is the normalized shared boundary length. W can be formulated as W (si,s j) =

[L(si)
−1 + L(s j)

−1] · L(si,s j), where L(si) is the length of boundary of superpixel si, and
L(si,s j) is the shared boundary length between si and s j.

In Eq. (2), W (si,s j) is used instead of L(si,s j) as the regularization term which dis-
courages small isolated regions. This is because for superpixels with different sizes, using
L(si,s j) leads to an overemphasis on the connectivity between large neighboring superpixels,
e.g., superpixels of the classes “sky” and “tree”, and consequently make the algorithm merge
superpixels that should not be merged.

There are two parameters λ and µ in our formulation, which represent the effects of
high-level contextual information and low-level spatial regularization, respectively. Both of
them can be chosen either empirically or by cross validation. Given λ and µ , we adopt
Markov Chain Monte Carlo methods for inference. Because the CRF is built on superpixels,
the inference is highly efficient, taking approximately 0.1 second per image on average. We
finally discard the semantic labels produced by CRF to obtain segmentations.
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4 A View in Graph Theory
Here we study the tasks of semantic labeling and image segmentation from the perspective
of graph coloring. We demonstrate that results in graph coloring offer theoretical insights
and practical heuristics for our solution.

We first consider a planar graph G1 whose vertices represent the segments in the ground
truth and whose edges connect all adjacent segments, as shown in Figure 6. Regarding each
color as a semantic label, a proper coloring of G1, in which all adjacent vertices have different
colors, inherently corresponds to a segmentation of the original image.

The Four Color Theorem [1] shows that four categories are enough to derive all possible
segmentations. However, in our problem, the following constraint needs to be considered:

The same concept, e.g. tree, may appear in different places in the image, which indicates
that separate vertices in G1 are required to share the same color.

Incorporating this constraint leads to a popular research topics in graph coloring named
the empire problem, and Heawood [20] has proved that if the size of any set that share the
same color is no larger than m, G1 can be colored by at most

H =

⌊
1
2
·
(

6m+1+
√
(6m+1)2−24χ

)⌋
(3)

colors, where b·c is the floor function and χ is the Euler characteristic of the surface of G1.
For planar graphs, χ = 2.

The other way of building a graph from an image is to regard each superpixel as a vertex.
We name the graph derived in this way G2. Because adjacent superpixels may belong to
the same semantic class, and thus share the same color, it is no longer appropriate to add
edges between all adjacent superpixels. Instead, we assume that any two vertices are directly
connected with probability c(n)/n, where n is the number of vertices and c(n) is a function
of n. For edge probabilities c(n)/n where c(n) = np is a linear function of n, Bollobás et al.
[4] showed that with probability one the graph G(n, p) satisfies(

1
2
−o(1)

)
log

1
1− p

n
logn

≤ H(G2(n, p))≤
(

1
2
+o(1)

)
log

1
1− p

n
logn

(4)

as n→ ∞, where o(1) denotes a function of n converging to zero as n→ ∞.
These results in coloring theory loosely justify our solution of deriving segmentations

from labelings, and also, as shown in Section 5.4, they provide heuristic values for the num-
ber of categories needed.

5 Experiments

5.1 Setup
The proposed image segmentation framework is tested both with and without the high/low-
level pairwise potentials, resulting in four variants (RIS, RIS+H, RIS+L, RIS+HL). For com-
pleteness, we also evaluate the segmentations derived from the outputs of a state-of-the-art
nonparametric semantic labeling system (SuperParsing) [39].

Our method use superpixels. There are many algorithms to obtain a superpixel initial-
ization, including FH [14], Mean Shift [7], and those from Ren et al. [30, 33]. Here we use
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Methods PRI ↑ VoI ↓ GCE ↓ BDE ↓
RIS+HL 0.8137 1.8232 0.1805 13.07
RIS+H 0.8052 1.9233 0.1952 13.16
RIS+L 0.8003 1.9054 0.2012 13.37

RIS 0.7871 2.0597 0.2199 13.78
SuperParsing 0.7628 2.0387 0.2178 15.05

MShift 0.7958 1.9725 0.1888 14.41
NCuts 0.7242 2.9061 0.2232 17.15
JSEG 0.7756 2.3217 0.1989 14.40

FH 0.7139 3.3949 0.1746 16.67
MNCuts 0.7559 2.4701 0.1925 15.10

NTP 0.7521 2.4954 0.2373 16.30
Saliency 0.7758 1.8165 0.1769 16.24

SpectClust 0.7357 2.6336 0.2469 15.40
ROI-Seg 0.7599 2.0072 0.1846 22.45

Affin — — 0.2140 —
Seed — — 0.2090 —

Table 1: Evaluations on BSDS. We highlight the best
algorithm for each measure.

Methods PRI ↑ VoI ↓
RIS+HL 0.78 1.29
RIS+H 0.75 1.35
RIS+L 0.76 1.36

RIS 0.73 1.42
SuperParsing 0.71 1.40
gPb-owt-ucm 0.78 1.68
C-Cluster-P 0.77 1.65
C-Cluster-H 0.78 1.59
Joint-kernel 0.78 1.62

TBES 0.76 1.49
MNCuts 0.63 2.77

Table 2: Evaluations on MSRC with
both supervised and unsupervised
methods. We highlight the best al-
gorithm for each measure.

Mean Shift with multiple sets of parameters to generate superpixels with various granulari-
ties. The numbers of superpixels for each image approximately range from 50 to 2,000.

We use the same visual descriptors as those in [39] on superpixels. These features gen-
erally encode the shape, location, texture/SIFT, and color of the superpixels.

Following [2, 23, 32], we conduct experiments on different datasets with multiple widely
adopted measures including Probabilistic Rand Index (PRI) [31, 42], Variation of Informa-
tion (VoI) [28], Global Consistency Error (GCE) [27], Boundary Displacement Error (BDE)
[16], and Segmentation Covering (Covering) [2]. Higher values of PRI and Covering and
lower values of VoI, GCE, and BDE correspond to more accurate segmentations.

5.2 Berkeley Segmentation Dataset

The Berkeley Segmentation Dataset (BSDS300) [27] consists of 300 natural images, each
of which has been manually segmented by multiple human subjects. The dataset has found
wide acceptance as a benchmark for image segmentation [2, 12].

In this experiment, we set λ = 0.05 and µ = 40 for RIS variants if necessary. Four RIS
variants and SuperParsing [39] are compared on the BSDS300 with eleven other segmen-
tation algorithms including Mean Shift (MShift) [7], Normalized Cuts (NCuts) [37], JSEG
[10], Graph-based Segmentation (FH) [14], Multiscale Normalized Cuts (MNCuts) [8], Nor-
malized Tree Partitioning (NTP) [43], Saliency-based Segmentation (Saliency) [12], Spec-
tral Clustering (SpectClust) [45], MSER-based segmentation (ROI-Seg) [11], pixel affinity
based method (Affin) [15], and the seeded graph cuts (Seed) [29]. Following [12, 43], we
use PRI, VoI, GCE and BDE as the metrics. The results of the others are taken from [12].

Table 1 shows that the idea of solving low-level segmentation by high-level labeling
produces convincing performance both parametrically and nonparametrically, outperform-
ing state-of-the-art algorithms. In particular, the performance of RIS+HL is better than the
others by a large margin in both PRI and BDE. Also, SuperParsing [39], as an off-the-
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Figure 3: Segmentation results on the Berkeley Segmentation Dataset. From left to right: (a)
original image, (b) results of Mean Shift [7], (c) Multiscale Normalized Cuts [8], (d) gPb-owt-
ucm [2], and (e) our framework, (f) ground truth segmentations, and (g) our labeling results.
As we can see, methods based purely on low-level features like (d) tend to merge patches of
similar appearances but different semantics.

shelf image labeling algorithm, achieves comparable performance with traditional methods
like Normalized Cut. These results justify the effectiveness of adopting high-level semantic
knowledge.

When the BSDS300 was proposed in [27], the 300 images were divided into two groups,
200 for training and 100 for testing. Recently, Arbeláez et al. [2] released the BSDS500 su-
perset, which added 200 images to BSDS300. Because some algorithms report hierarchical
segmentations or sets of segmentations, obtaining a single segmentation involves a choice of
scale. To have an objective evaluation for these methods, they calculated, for each measure,
both Optimal Dataset Scale (ODS), which uses a fixed threshold for the entire dataset, and
Optimal Image Scale (OIS), which selects the optimal threshold on a per-image basis.

Here we evaluate our algorithm under the same setting. To obtain multiple segmenta-
tions, λ is set from 0 to 0.1 with a step of 0.01 and µ is set from 0 to 200 with a step of
20, which produce 11×11 = 121 segmentation maps per image. Larger values of λ and µ

emphasize more on the smoothness between neighboring superpixels, and typically generate
fewer segments. We compare our algorithm with both supervised methods including gPb-
owt-ucm [2], fPb-owt-ucm [23], cPb-owt-ucm [23], Correlation Clustering (C-Cluster) [22],
and joint kernel learning (Joint-kernel) [21], and unsupervised methods like Canny-owt-ucm
(Canny) [2], Segmentation by Weighted Aggregation (SWA) [36], Texture and Boundary
Encoding (TBES) [32], Average Dissimilarity (AvDis) [3], Chan-Vese model (ChanVese)
[3], a fixed hierarchy of regions (Quad-Tree), and others listed in Table 1.

Again, as shown in Table 3, our high-level solution yields highly competitive results.
Specifically, on both datasets, RIS+HL is comparable with [2] and [23] in most measures
and consistently better than the others in all measures. As shown in Figure 3, when methods
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BSDS300 BSDS500
Covering ↑ PRI ↑ VoI ↓ Covering ↑ PRI ↑ VoI ↓

ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS ODS OIS
Human 0.73 0.73 0.87 0.87 1.16 1.16 0.88 0.88 1.17 1.17 0.72 0.72

RIS+HL 0.59 0.65 0.82 0.86 1.71 1.53 0.57 0.66 0.84 0.86 1.73 1.55
RIS+H 0.55 0.60 0.80 0.84 1.82 1.63 0.53 0.61 0.82 0.84 1.91 1.70
RIS+L 0.57 0.63 0.79 0.82 1.80 1.60 0.55 0.61 0.81 0.84 1.85 1.68

RIS 0.52 — 0.77 — 1.99 — 0.50 — 0.78 — 2.05 —
SuperParsing 0.48 — 0.74 — 2.07 — 0.47 — 0.75 — 2.19 —
gPb-owt-ucm 0.59 0.65 0.81 0.85 1.65 1.47 0.59 0.65 0.83 0.86 1.69 1.48
fPb-owt-ucm 0.57 0.63 0.80 0.84 1.69 1.49 0.58 0.63 0.82 0.85 1.70 1.50
cPb-owt-ucm 0.59 0.65 0.81 0.85 1.66 1.46 0.59 0.65 0.83 0.86 1.65 1.45
C-Cluster-P — — 0.81 — 1.83 — — — — — — —
C-Cluster-H — — 0.81 — 1.74 — — — — — — —
Joint-kernel — — 0.79 — 1.90 — — — — — — —

MShift 0.54 0.58 0.78 0.80 1.83 1.63 0.54 0.58 0.79 0.81 1.85 1.64
FH 0.51 0.58 0.77 0.82 2.15 1.79 0.52 0.57 0.80 0.82 2.21 1.87

Canny 0.48 0.56 0.77 0.82 2.11 1.81 0.49 0.55 0.79 0.83 2.19 1.89
MNCuts 0.44 0.53 0.75 0.79 2.18 1.84 0.45 0.53 0.78 0.80 2.23 1.89

SWA 0.47 0.55 0.75 0.80 2.06 1.75 — — — — — —
Saliency 0.57 — 0.78 — 1.81 — — — — — — —
TBES 0.54 — 0.78 — 1.86 — — — — — — —
AvDis 0.47 — 0.76 — 2.62 — — — — — — —

ChanVese 0.49 — 0.75 — 2.54 — — — — — — —
Quad-Tree 0.33 0.39 0.71 0.75 2.34 2.22 0.32 0.37 0.73 0.74 2.46 2.32

Table 3: Comparison on the test sets of BSDS300 and BSDS500 with both supervised and
unsupervised methods. For each measure, the best algorithm is highlighted.

Figure 4: Segmentation results on MSRC.

based purely on the ambiguous low-level features like [2] tend to merge patches of similar
appearances but different semantics, high-level semantic knowledge could help to figure out
a correct segmentation. More results are available in the supplementary material.

We demonstrate the capacity of our high-level solution on a simple model and achieve
highly competitive results. The performance of our algorithm is subject to further improve-
ment in many aspects, e.g., incorporating recent developments in affinity learning [23].

5.3 MSRC Database

Most of our experiments are done on the BSDS, hitherto the most complete and widely used
segmentation benchmark. To prove our generality, or the ability to break out of “closed
universe”, we also report results on the MSRC Database.

The MSRC Database [38] consists of 591 images with objects grouped into 23 categories.
We use the cleaned up segmentations provided in [26] as the ground truth, which are more
reasonable and precise than the original data. Following [32], PRI and VoI are used to
evaluate segmentation results.

Table 2 compares our solution with TBES [32], gPb-owt-ucm (gPb-owt-ucm) [2], Cor-
relation Clustering (C-Cluster) [22], joint kernel learning (Joint-kernel) [21], and Multiscare
Normalized Cuts [8]. Our method outperforms all other methods.
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Figure 5: Performance with a varying num-
ber of classes.

2
3 4
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7

Figure 6: A view in graph coloring theory.
Adjacent regions are assigned different col-
ors for their different semantic labels.

5.4 Evaluation on the Number of Categories
Following the theory discussed earlier, we evaluate the effect of the number of categories in
the framework on the test set of BSDS300, measured in PRI, VoI, and Covering.

We use the most frequent classes in the evaluation. Figure 5 shows that the performance
reaches a peak in VoI and Covering when the number of classes is between 30 and 60. In
terms of PRI, the performance tends to be stable when the number of classes is over 40, with a
slight tendency of increase. Note that the bound given by the empire problem [20] is 60 when
the maximum size of empire m = 10, and the bound given by the random graph formulation
[4] is 36.46 when the number of superpixels n = 300 and the edge probability p = 0.75.
These correspondences demonstrate that theoretical results do provide close heuristics.

6 Conclusion
In this paper, we observe that a high-level solution performs well in the task of low-level
image segmentation. Extensive experiments show that our simple framework achieves con-
vincing results, highly competitive with the state-of-the-art algorithms. We believe that the
idea of using high-level knowledge for low-level tasks deserves future attention.

Acknowledgement
This work is supported by NSF IIS-1216528 (IIS-1360566) and NSF IIS-0844566 (IIS-
1360568).

References
[1] K. Appel and W. Haken. Every planar map is four colorable. Illinois Journal of Math-

ematics, 21(3):429–567, 1977.

[2] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical
image segmentation. IEEE TPAMI, 33(5):898–916, 2011.

Citation
Citation
{Heawood} 1890

Citation
Citation
{Bollob{á}s} 1988



WU, ZHU, TU: REVERSE IMAGE SEGMENTATION 11

[3] L. Bertelli, B. Sumengen, BS Manjunath, and F. Gibou. A variational framework for
multiregion pairwise-similarity-based image segmentation. IEEE TPAMI, 30(8):1400–
1414, 2008.

[4] B. Bollobás. The chromatic number of random graphs. Combinatorica, 8(1):49–55,
1988.

[5] J. Carreira, F. Li, and C. Sminchisescu. Object recognition by sequential figure-ground
ranking. IJCV, 98(3):243–262, 2012.

[6] C. Cheng, A. Koschan, C.H. Chen, D.L. Page, and M.A. Abidi. Outdoor scene image
segmentation based on background recognition and perceptual organization. IEEE TIP,
21(3):1007–1019, 2012.

[7] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analy-
sis. IEEE TPAMI, 24(5):603–619, 2002.

[8] T. Cour, F. Benezit, and J. Shi. Spectral segmentation with multiscale graph decompo-
sition. In CVPR, 2005.

[9] D. Cremers, M. Rousson, and R. Deriche. A review of statistical approaches to level
set segmentation: integrating color, texture, motion and shape. IJCV, 72(2):195–215,
2007.

[10] Y. Deng and BS Manjunath. Unsupervised segmentation of color-texture regions in
images and video. IEEE TPAMI, 23(8):800–810, 2001.

[11] M. Donoser and H. Bischof. Roi-seg: Unsupervised color segmentation by combining
differently focused sub results. In CVPR, 2007.

[12] M. Donoser, M. Urschler, M. Hirzer, and H. Bischof. Saliency driven total variation
segmentation. In ICCV, 2009.

[13] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. Liblinear: A library for
large linear classification. JMLR, 9:1871–1874, 2008.

[14] P.F. Felzenszwalb and D.P. Huttenlocher. Efficient graph-based image segmentation.
IJCV, 59(2):167–181, 2004.

[15] C. Fowlkes, D. Martin, and J. Malik. Learning affinity functions for image segmenta-
tion: Combining patch-based and gradient-based approaches. In CVPR, 2003.

[16] J. Freixenet, X. Muñoz, D. Raba, J. Martí, and X. Cufí. Yet another survey on image
segmentation: Region and boundary information integration. In ECCV, 2002.

[17] B. Fulkerson, A. Vedaldi, and S. Soatto. Class segmentation and object localization
with superpixel neighborhoods. In ICCV, 2009.

[18] S. Gould, R. Fulton, and D. Koller. Decomposing a scene into geometric and semanti-
cally consistent regions. In ICCV, 2009.

[19] X. He, R.S. Zemel, and M.A. Carreira-Perpinán. Multiscale conditional random fields
for image labeling. In CVPR, 2004.



12 WU, ZHU, TU: REVERSE IMAGE SEGMENTATION

[20] P. J. Heawood. Map colour theorem. J. Pure Appl. Math, 24:332–338, 1890.

[21] Jongmin Kim, Youngjoo Seo, Sanghyuk Park, Sungrack Yun, and Chang D Yoo. Joint
kernel learning for supervised image segmentation. In ACCV. 2013.

[22] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Dong Yoo. Higher-
order correlation clustering for image segmentation. In NIPS, 2011.

[23] Tae Hoon Kim, Kyoung Mu Lee, and Sang Uk Lee. Learning full pairwise affinities
for spectral segmentation. TPAMI, 35(7):1690–1703, 2013.

[24] B. Liu, S. Gould, and D. Koller. Single image depth estimation from predicted semantic
labels. In CVPR, 2010.

[25] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer. IEEE
TPAMI, 33(12):2368–2382, 2011.

[26] Tomasz Malisiewicz and Alexei A. Efros. Improving spatial support for objects via
multiple segmentations. In BMVC, 2007.

[27] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented nat-
ural images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In ICCV, 2001.
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