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Abstract

Based on the structural risk minimization principle, the linear SVM aiming at find-
ing the linear decision plane with the maximal margin in the input space has gained
increasing popularity due to its generalizability, efficiency and acceptable performance.
However, rarely training data are evenly distributed in the input space [1], which leads
to a high global VC confidence [4], downgrading the performance of the linear SVM
classifier. Partitioning the input space in tandem with local learning may alleviate the
unevenly data distribution problem. However, the extra model complexity introduced by
partitioning frequently leads to overfitting. To solve this problem, we proposed a new
supervised learning algorithm, Randomized Support Vector Forest (RSVF): Many par-
titions of the input space are constructed with partitioning regions amenable to the cor-
responding linear SVMs. The randomness of the partitions is injected through random
feature selection and bagging. This partition randomness prevents the overfitting intro-
duced by the over-complicated partitioning. We extensively evaluate the performance of
the RSVF on several benchmark datasets, originated from various vision applications,
including the four UCI datasets, the letter dataset, the KTH and the UCF sports dataset,
and the Scene-15 dataset. The proposed RSVF outperforms linear SVM , kernel SVM,
Random Forests (RF), and a local learning algorithm, SVM-KNN, on all of the evaluated
datasets. The classification speed of the RSVF is comparable to linear SVM.

1 Introduction
Successful supervised learning algorithms must have reached an operating point balancing
the model complexity and learning capacity [3, 5, 6, 9, 11, 13, 14, 19, 21, 26, 31]. The
linear SVM aiming at finding the linear decision plane with the maximal margin in the input
space has gained increasing popularity due to its generalizability and efficiency [17, 26]. But
the performance of a linear SVM depends on the linear separability of the data in the input
space. That is, linear SVM may perform poorly on data with a distribution not linearly sepa-
rable, as illustrated in Figure 1. Kernel-SVM may be a remedy but the selection of kernels is
task-dependent and tricky: the capacity control parameters, which are implicitly represented
as kernel type and support vector numbers, are globally determined by the data distribution
in the input space. Furthermore, the slow speed of kernel SVM both in training and classifi-
cation prevents its application in large scale problems, which constitute a significant portion
of current computer vision research.
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Figure 2: The structure of RSVF. This figure shows a RSVF with N trees. Each tree, with
depth 5, is demonstrated in the last row of the figure. The small green dots are the Linear
SVM classifiers; the other dots are the binary classifiers. Note, the binary classifiers men-
tioned in this paper represent decision nodes, which use a threshold to split the data into two
child nodes.

Figure 1: Demonstration of data distribution
of the toy example. The cross marks represent
the positive samples and the blue circle marks
stand for the negative samples.

Partitioning the input space in tandem
with local learning is another way of tun-
ing learning capacity according to data dis-
tribution. Bottou and Vapnik [1] proposed
a general local learning framework with
an implementation which uses the K Near-
est Neighbor (KNN) as a data partitioner,
and the neural network as a local classifier.
Zhang et al. [31] proposed an SVM-KNN
approach, in which K nearest neighbors in
the training set for each testing sample are
selected and a local SVM is learned from
the K neighbors to classify the testing sam-
ple. However, both of the algorithms have
the same discrepancy between the data par-
titioner and the local classifier: KNN as
a data partitioner aims at picking up data
samples close to each other without consid-
ering the local pattern separability in determining the performance of the local classifier;
closeness in a user-defined metric does not necessarily lead to the desired pattern separabil-
ity. For the large scale learning problems, the low efficiency of KNN limits the applicability
of the local learning algorithms discussed above. There are other more efficient data parti-
tion method such as clustering, hashing, and hierarchical trees. However, the extra model
complexity introduced by partitioning frequently leads to overfitting, the main reason that
we need to prune a decision tree if it is too large [18].

To solve this problem, we proposed a new supervised learning algorithm, Randomized
Support Vector Forest (RSVF): Many partitions of the input space are constructed with par-
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titioning regions amenable to the corresponding linear SVMs. The randomness of the par-
titions is injected through random feature selection and bagging. This partition randomness
prevents the overfitting introduced by the over-complicated partitioning.

As shown in Figure 2, the basic idea is to split the dataset, with certain randomness,
into many small linearly separable partitions and train a linear SVM for each partition. The
training data are organized into different hierarchical partitions with randomized partition
criteria. Among randomly selected partition planes at each node, the one which leads to
the maximal separating margin for the child partitions is selected. Unlike previous local
learning algorithms that use the nearest neighbor for partitioning, we use randomized forest
with minimum error rate criterion to partition the input space, reconciling the discrepancy
between the data partitioner and local classifier. The partitioned input space under such rule
will be shown to lead to better classification performance than linear SVM, kernel SVM,
Random Forests (RF) [3], and SVM-KNN, in Section 3.

As shown in Figure 2, a tree in the proposed RSVF may bear some similarities with a
decision tree. But there are two major differences. First, decision tree uses the information
gain or Gini importance to guide the node splitting while the RSVF uses the linear separa-
bility (i.e., the margin between samples) of each child node, in order to reduce the learning
capacity of the local classifier. Second, the decision tree estimates the class label through
a majority voting at the nodes, whereas in the proposed RSVF, much more powerful linear
SVM is applied.

There have been several previous works based on pooling of customized trees, such as
the Discriminant Random Forest (DRF) [15], the Binary SVM Decision Trees (BSDT) [16]
and, the decision trees in [29] (RF3). The node in DRF is split using Linear Discriminant
Analysis (LDA). For BSDT, the internal nodes of SVM-BDT are trained by first partitioning
the data through clustering, labeling two partitions of data with label ’+1’ and ’-1’ and the
SVM classifiers are trained on these two partitions of data. The RF3 are designed specifically
for image classification with very large number of categories. At each node of RF3, binary
labels are randomly assigned to each category and the corresponding linear SVM is trained.
For the previous works discussed above, the nodes are split through information gain or LDA
without considering the linear separability of the leaf nodes.

Our main contribution lies in two folds. First, we reconcile the discrepancy between
the data partitioner and the local classifier: for the data partitioner, we use the estimated
linear separability of the resulting linear SVM as the data partition criterion while previous
local learning algorithms used distances defined in the input space. Second, by injecting the
randomness to data partition through random feature selection and bagging, we avoid the
overfitting caused by over-complicated data partitioners. The advantages of the proposed
RSVF are: (1) Very good performance compared favorably with popular supervised learning
algorithms including linear SVM, kernel SVM, RF, and SVM-KNN; (2) Efficiency thanks
to its shallow depth and the linear operation at each node; (3) Parallelizability.

2 Randomized Support Vector Forest (RSVF)
2.1 Training RSVF
As illustrated in Figure 2, the RSVF consists of many Support Vector Trees (SVT). Each
SVT represents a scheme of data partition and the corresponding local classifier. The fi-
nal classification result of RSVF is a pooling from all the SVTs. After comparing various
pooling methods including the majority voting, and max voting, i.e., taking the prediction
from the SVT with the maximal confidence, we use majority voting from all of the trees in
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the forest for its simplicity and efficacy. We grow the RSVF through a procedure similar to
growing the Classification And Regression Trees (CART) in random forest [23].

The majority voting from all SVTs in the resulted RSVF is used to achieve the final
classification.

2.2 Training Support Vector Trees (SVTs)
Our algorithm consists of two major steps. First, the input space or the partite cells are
partitioned according to the linear separability of the child nodes. Second, within each partite
cell, an linear SVM is learned to classify the feature vectors. As shown in Figure 2, each
SVT in the proposed RSVF has two types of nodes, inner nodes and leaf nodes. The inner
nodes are partition nodes, serving as data partitioners; and the leaf nodes are linear SVM
classifiers, serving as local classifiers. As a data partitioner, an inner node of an SVT should
facilitate the task of the corresponding local classifier, i.e., the corresponding linear SVM, by
enlarging the linear separability of the local data inside the cell. A straightforward estimate
of the linear separability is the classification margin of the local linear SVM. However, the
classification margin should be normalized according to the partition cell size and number of
local data; this normalization is very sensitive and leads to fragile estimate.

To make the estimate of the linear separability insensitive to the cell size and local data
amount, we use the error rates of the learned linear SVM on the Out-Of-Bag (OOB) data as
the estimate, which has been shown to be very stable and accurate [2, 3]. By training the
inner nodes with linear separability estimated as the error rate on OOB data, the input space
is partitioned to favor linear separable cells, leading to well performed local linear SVMs, as
illustrated in Figure 1.

Inner Node Split Rule for RSVF Each node corresponds to a partition cell, i.e., a poly-
hedron, in the input space. The cell associated with each inner node of a SVT is split into
two sub-cells, corresponding to the two child nodes . The selection of the optimal split is
based on the OOB error rates of the linear SVMs learned for the two sub-cells. The split
corresponding to the lowest OOB error rates is used to split the inner node. The OOB error
rate of a local linear SVM is computed by counting the number of classification errors of the
OOB training data falling into the corresponding cell.

Stop Criterion Each inner node is recursively split until the total OOB error rate of the
child nodes (computed using Equation 1), is equal to or larger than that of their parent node,
which indicates further splitting will not improve the performance of the SVT.

Training SVT A SVT T is trained using the bootstrap dataset X ∗ and the OOB data
X\X ∗. It is constructed by recursively splitting a set of samples S ⊆ X ∗ into two distinct
subsets Sl and Sr and splitting a set of OOB samples SO ⊆ X\X ∗ into two distinct subsets
SOl and SOr as well: one parent node is recursively split into two child nodes, until the stop
condition is met.

The split quality is measured as the drop of the error rate on the OOB data falling into
the split sub-cells:

δe = e− (plel + prer), (1)

where the proportions of OOB samples in left and right nodes are represented as pl and pr
respectively. The error rates of the parent node, left and right child node are denoted as e, el
and er. They are determined by the SVM classifiers trained and tested on those pairs of data
(S,SO), (Sl ,SOl) and (Sr,SOr) respectively.

Each SVT is trained with the following steps:
Step 1 Randomly propose a set of splitting candidates Φ = {φ |φ = (θ ,ω,τ)}, where θ

is the feature dimension index. The dimension of θ is a predefined constant, which means
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the number of variables that are involved in random projection. ω is the random projection
weight vector and each value of ω is randomly generated in [0,1] and the dimension of ω is
the same as θ . τ is the threshold and it is randomly selected from the values computed on S
by ωT · fθ , where fθ is constructed by taking values from the feature vector at the dimensions
determined by θ .

Step 2 Partition the set of samples S = {x} into left subset and right subset with each φ :

Sl(φ) = {x|ωT · fθ (x)< τ +δτ,x ∈ S} (2)

Sr(φ) = {x|ωT · fθ (x)> τ−δτ,x ∈ S} (3)

SOl(φ) = {x|ωT · fθ (x)< τ +δτ,x ∈ SO} (4)

SOr(φ) = {x|ωT · fθ (x)> τ−δτ,x ∈ SO}, (5)

where δτ is the boundary relaxation factor. Given a node, let τ denote its partition threshold.
Those samples fall between [τ − δτ,τ + δτ] will be included into both child partitions to
avoid the split boundary perturbation. The boundary relaxation factor δτ is determined
through cross validation.

Train two linear SVM classifiers on Sl and Sr, and evaluate them on SOl and SOr, ac-
cordingly. The error rate e(φ) is computed using Equ. 1.

Step 3 Compute the optimal φ
∗ producing the largest drop in error rate as the split can-

didate by Equ. 6:
φ
∗ = argmax

φ

δe(φ) (6)

Step 4 If δe(φ ∗)> 0, then recursively split the left and right subset pairs (Sl(φ
∗),SOl(φ

∗))
and (Sr(φ

∗),SOr(φ
∗)); if δe(φ ∗) ≤ 0, then stop the split. The subset S is used to train the

leaf node SVM classifiers.
Each resulting leaf node in the RSVF represents a local input space with high linear

separability, which boosted the performance of the corresponding local linear SVM.

2.3 Performance and generalization discussion
The generalization of the RSVF benefits from the randomness injected through random fea-
ture selection and bagging, which is also essential to the generalization of random forests [3].

With the injected randomness, the generalization error of RSVF can be proved to con-
verge almost surely using the Law of Large Numbers when the number of SVTs increases.
The detailed proof is given in the Appendix A in the supplementary materials. As the num-
ber of trees in RSVF increases, for almost surely all Θ , the generalization error eg of RSVF
converges to,

PX,Y (PΘ (T (X,Θ) = Y )−max
j 6=Y

PΘ (T (X,Θ) = j < 0) (7)

where T is an SVT; X is feature matrix; Y is the label of X; and Θ is a set of parameters φ ∗

associated with the SVT T .
Theoretical analysis on RF has shown that the error rate of RF depends on two factors [3].

First, the correlation between any two trees in the forest: increasing the correlation increases
the forest’s error rate. Second, the strength of each individual tree in the forest: increasing
the strength of the individual trees decreases the forest’s error rate. Compared to RF, the pro-
posed RSVF keeps the same correlation among trees but increases the strength of each tree
(verified in our experiments), leading to a better performance than the RF. The experiments
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Section 3.2 show that trees in RSVF are stronger than their peers in RF. The difference be-
tween RSVF and RF lies in the following three aspects: 1) The trees in RSVF are used as the
data partitioner and have very small depth while the trees in RF are used as the classifier and
have large depth, as shown in Section 3; 2) RSVF is inherently a local learning algorithm
while RF is an ensemble of tree classifiers; 3) An inner node of each CART in RF is split
using the Gini importance while an inner node of each SVT in RSVF is split according to
the linear separability estimated using the OOB error rate of the resulting children node.

3 Experiments
Several benchmark datasets from various applications are used to evaluate the proposed
RSVF. Action recognition datasets including, KTH [22], and UCF sports dataset [20] are
used. Four UCI datasets [8] widely accepted as the benchmark in machine learning commu-
nity are included as well. Additionally, we perform image classification task on fifteen scene
categories dataset [25].

3.1 The evaluation philosophy
We propose RSVF to provide a generic supervised local learning tool. Therefore, we com-
pared the proposed RSVF with the state-of-the-art supervised learning algorithms including
linear SVM, kernel SVM, random forest, and a local learning algorithm SVM-KNN [31].
For the fair comparison, we use the same feature for all compared algorithms. And for each
algorithm compared, we search the tuning parameters of the compared algorithm and the
best performance is used to compare. We aim at comparing the performances of RSVF with
the popular supervised learning algorithms using standard feature; it is not our intention to
achieve the best performance on the benchmark datasets. Therefore, for vision applications,
we try to avoid using domain specific feature/model such as deformable model, spatial pyra-
mid, and dense tracking feature and only use the standard bag-of-visual-words feature, which
frequently serves as the baseline for feature comparison.

In our experimental setup, the only tuning parameter is the number of the support vector
trees. For each hypothesis evaluation, we apply the linear SVM from the liblinear package
with all default settings (The fixed default value 1.0 for the regularization parameter is used)
based on an experiment on the effect of regularization parameter on KTH dataset. The
result shows that the RSVF is quite insensitive to the regularization parameter. We vary
the regularization parameter from 10−8 to 10, resulting a performance perturbation less than
0.5%; the RSVF reaches its best performance when the regularization parameter is larger
than 10−6.

3.2 The letter recognition experiments on UCI dataset
The letter recognition dataset [8] contains 20000 samples in 26 categories. We follow the
recommended setting in UCI machine learning repository [8], where we have 16000 samples
for training and 4000 samples for testing. Two experiments are carried out on this dataset.
The first experiment is one-vs-all binary classification where we compare RSVF with the
two baselines, Linear SVM and RF. The second experiment is a multiclass classification task
where each leaf node in the RSVF is a multi-class SVM classifier (one-vs-all). The results
in Table 1 show how differently the RF and RSVF respond to different tree depth as we have
discussed in Section 2.3.

Citation
Citation
{Schuldt, Laptev, and Caputo} 2004

Citation
Citation
{Rodriguez, Ahmed, and Shah} 2008

Citation
Citation
{Frank and Asuncion} 2010

Citation
Citation
{Svetlanaprotect unhbox voidb@x penalty @M  {}Lazebnik and Ponce} 2006

Citation
Citation
{Zhang, Berg, Maire, and Malik} 2006

Citation
Citation
{Frank and Asuncion} 2010

Citation
Citation
{Frank and Asuncion} 2010



LV et al.: RANDOMIZED SUPPORT VECTOR FOREST 7

k t LSVM RF RF3 RSVF K SVM-KNN
0.3243 2 0.0568

2 1 0.9363 0.2825 4 0.0715
3 1 0.9280 0.244 8 0.1125
5 1 0.7483 0.1438 16 0.1785
7 1 0.5770 0.12 32 0.2690
22 1 0.1858
5 100 0.525 0.0703
7 100 0.3633 0.0338
22 100 0.0393 0.041

Table 1: Performance comparison with Random Forests (RF) and Linear SVM (LSVM) on
letter dataset. The column k is the maximum depth of each tree; the column t is the number
of trees in the forest. Note, for RF, depth larger than 22 will not improve the performance
any more; RF3 is proposed in [4].

Evaluation with multiclass classifier Table 1 shows the error rates of various classifiers
on the letter dataset. From the experiments, the SVM-KNN seems to be parameter sensitive
with the number of nearest neighbors selected. Linear SVM performs worst, because the
feature for this dataset is not linearly separable. Comparing the best results achieved by
RSVF and RF, in order for RF to achieve a performance close to RSVF, the depth of trees
has to increase drastically. Since the generalization capability goes down as the tree depth
goes up, the obtained RSVF has better generalization capability than RF as shown in the
experiment below.

Overfitting We design an experiment to show the overfitting property of both RSVF and
RF. We randomly leave 70% of 160000 examples (from training data) for test and the rest
30% for training. Both RSVF and RF have 10 trees and the error rate for depth from 1 to
10 is reported in Fig. 3(a). When the depth is larger than 8, the RF training error decreases
while its testing error goes up, which shows that RF is overfitting.
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Figure 3: Fig. 3(a) shows the overfitting of RF. On training dataset of letter dataset, with
70% left for testing and 30% for training. They both have 10 trees. In Fig. 3(b), it shows the
relationship between the error rate and the number of trees in the forest. It is evaluated on
a random split of dataset Scene-15. x-axis represents the number of trees in the RSVF and
RF; y-axis represents the error rate. Note, for visualization purpose, the length of each error
bar is two times of the actual standard deviation.

3.3 The action recognition experiments
The KTH dataset: The KTH dataset [22] has been used as a benchmark dataset to evaluate
action recognition algorithms. It contains six actions (boxing, hand clapping, hand waving,
jogging, running and walking) performed by 25 subjects in 4 scenes. We follow the original
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Method LSVM RF RSVF SVM-KNN χ2-KSVM RBF-KSVM

KTH* 92.59% 91.67% 93.98% 87.04% 92.59% 92.13%
UCF 65.7 ± 5.8% 61.5 ± 7.3% 72.2 ± 5.4% 48.4 ± 5.6% 66.3 ± 6.6% 62.3 ± 6.7%
Scene15 75.1 ± 0.3% 63.3 ± 0.9% 78.3 ± 0.4% 59.9 ± 0.9% 76.9 ± 0.4% 75.7 ± 0.6%

Table 2: Recognition accuracy on KTH, Scene-15 and UCF sports datasets. *Note: since the
training and the testing sets are fixed in the KTH dataset, we just follow the standard setup
so that our result can be compared with [7, 10, 12, 27].
experiment setup in [22], which are adopted by most of action recognition works including
[7, 10, 12, 27]. Actions of 16 subjects are used for training and actions of 9 subjects are
used for testing. There are 599 samples in this KTH dataset, where 383 samples are assigned
for training and 216 for testing. STIPs [27] are used as the basic descriptor, and a bag-of-
visual-words model is used to generate a histogram as the feature vector for each video.
The codebook is generated using a K-means algorithm with K = 2000, resulting in a 2000
dimensional feature vector. The classification result by RSVF is compared favorably with
linear SVM, random forests, kernel SVMs (using χ2 kernel and RBF kernel), and SVM-
KNN as shown in Table 2. In this experiment, we use RSVF with 100 trees. During the
training process, we randomly check 44 θ vectors, 2 ω vectors and 40 τ values, which results
in a set of 44×2×40 φ candidates. For the other experiments (other than KTH), we only use
one dimensional ω to split the nodes. For KTH dataset, the feature vector generated is quite
sparse. There are only 10-30 non-zero values at each dimension. It is hard to get a balanced
split with only one dimension for the training samples. Therefore, using the combination of
two random variables to split the nodes is necessary.

The UCF Sports dataset: The UCF Sports dataset contains 10 actions: swinging, div-
ing, kicking, lifting, horse-riding, running, skateboarding, swing (high bar), swing-golf,
walking. There are in total 150 videos with large variance in each action category. To in-
crease the number of training samples, we follow the same scheme in [27] that adds flipped
version to the training data. Instead of using the leave-one-out experiment setup [27, 28], we
make the experiment more challenging by randomly selecting 40% of 150 videos for testing
and the rest for training. The whole learning-testing process is repeated 10 times to show
the statistical significance. The average and standard deviation of each compared supervised
learning algorithm is reported in Table 2.

On both of the KTH and UCF dataset, the RSVF outperforms other methods significantly.
The feature used here is simple STIP descriptor [27] with bag-of-visual-words model. With
the recently proposed features such as dense trajectories for action recognition [28], the
accuracy will likely be further improved.

3.4 The Image classification experiments on the Scene-15 dataset
The Scene-15 dataset consists of 15 scene categories. Each category has 200 to 400 im-
ages with average size 300× 250 pixels. Following the original experiment setup on this
dataset [25], we leave 100 images per category for training and the rest of the images for
testing. The whole learning-testing process is repeated for 10 times; the average and stan-
dard deviation of each compared supervised learning algorithm is reported in Table 2.

To form the feature vector, we extract SIFT descriptors from every image densely. The
grid spacing is 8× 8, and patch size is 16× 16. Bag of words model is used to generate
histogram feature for each image. The codebook is trained by K-means algorithm, which is
fixed to 4096. The performance of our baseline Linear SVM is comparable to that of [25]
which uses a similar feature . With the feature generating method from [30] and RSVF, the
performance can be further improved.
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Type Best in [24] Linear SVM RBF-SVM RSVF RF
dna 0.059 ± 0.005 0.088 ± 0.017 0.054 ± 0.010 0.052 ± 0.008 0.056 ± 0.011
wine 0.030 ± 0.029 0.023 ± 0.024 0.016 ± 0.022 0.002 ± 0.007 0.014 ± 0.016
iris 0.057 ±0.022 0.038 ± 0.026 0.032 ± 0.025 0.029 ±0.048 0.041 ±0.029
glass 0.232 ±0.047 0.408 ± 0.091 0.300 ± 0.059 0.223 ± 0.068 0.234 ± 0.055

Table 3: Performance comparison on UCI datasets. The results in the first column is obtained
from [24].

On the Scene-15 dataset, we also investigate the relationship between the error rate and
the number of trees in RSVF. As illustrated in Figure 3(b), more SVTs in the RSVF will
lead to better performance. Additionally, because the SVT in RSVF is a stronger classifier
compared to decision trees in RF, RSVF usually requires much less trees than RF.

3.5 Experiments on more datasets from UCI repository
We evaluate the RSVF on 4 more datasets from UCI repository. The experiment setup fol-
lows [24]; 25% data are randomly selected as testing dataset, and the rest 75% are considered
as training dataset. Each algorithm runs 10 times on the dataset. The average error rate and
the standard deviation are reported in Table 3. On the UCI datasets, the RSVF outperforms
the state-of-the-art results reported in [24], and it also performs better than linear SVM,
non-linear SVM with RBF kernel, and RF.

3.6 Computational complexity
The complexity of Linear SVM is O(n) for classification, where n is the dimension of the
feature vectors. The complexity of RF for classification is O(tk), where t is the number
of trees in the forest and k is the depth of the trees. The SVTs in RSVF has lower depth,
no more than 5 in all of our experiments except the letter recognition where the depth is 7,
which are negligible compared with feature dimension in most of the vision applications.
Note the depth of SVTs are determined automatically. Therefore, the complexity of RSVF
is O(tn), where t is the number of trees in the forest and n is the dimension size of feature
vectors. Comparing RSVF with Linear SVM, the number of trees is usually not very big,
which makes its complexity comparable to Linear SVM. Our extensive evaluations show that
RSVF outperforms RF and linear/non-linear SVM significantly. Therefore, considering both
the computational complexity and the performance, RSVF is a very promising alternative to
SVM and RF. The RSVF is easily parallelized due to the independence among SVTs. For
our experiments, We set up a Hadoop cluster with capacity of 126 tasks to train each tree of
the RSVF concurrently.

4 Conclusion
We proposed the Randomized Support Vector Forest (RSVF) for classification. Compared
to liner SVM, RSFV does not assume the linear separability of the data. Compared to RF,
RSFV has a much smaller depth resulting in better generalization capability and is less likely
to overfit. Compared to the local learning algorithms, the RSVF avoid the extra model com-
plexity introduced by the data cautioner. The performance of RSFV was evaluated exten-
sively on several standard datasets from various vision applications. The proposed RSVF
outperforms linear SVM, Random Forests (RF), Kernel SVM and SVM-KNN on all the
datasets.

Appendix A: Proof of the Convergence of the RSVF
Suppose the training data set, X = {(x1,y1),(x2,y2), . . . ,(xM,yM)}, is obtained by draw
randomly from the distribution of the random vector (X,Y ), where X is the feature and Y
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is the class label. Given K SVTs T1(x),T2(x), . . . ,TK(x), we define the RSVF’s margin
function for (X,Y ) as,

f (X,Y ) =
1
K ∑

k
I(Tk(X) = Y )−max

j 6=Y

1
K ∑

k
I(Tk(X) = j)

where I(.) is the indicator function. The margin function f (X,Y ) measures the extent to
which the average vote at X,Y for the right class exceeds the majority vote for any other
class. The generalization error is then given by

Eg = PX,Y ( f (X,Y )< 0),

where PX,Y is the probability over X and Y .
Recall that in STEP 1 of the training an SVT (at page 6 of the paper), the kth SVT is

constructed from a random vector φ k, the splitting candidate, generated independently from
the same distribution Φ. We represent the kth SVT as: Tk(X) = T (X,φ k).

As mentioned in Section 2.3, the RSVF does not overfit while the number of trees in-
creases. More rigorously, we are going to show the following theorem.
Theorem.
While the number SVTs increases, for almost surely all sequences φ 1, . . . ,φ k, . . ., the gener-
alization error Eg converges to

PX,Y (PΦ(T (X,Φ) = Y )−max
j 6=Y

PΦ(T (X,Φ) = j < 0).

Proof. It is sufficient to show that there is a set of probability zero C on the sequence space
φ 1,φ 2, . . . such that outside of C, for all x ,

1
N

N

∑
n=1

I(T (φ n,x) = j)→ PΦ(T (Φ,x) = j).

For a fixed training set and a fixed φ k, the set of all x such that T (φ k,x) = j is a union
of polyhedrons in the feature space. If Φ is a discrete random vector, which is true for SVT,
there is only a finite number of such unions of polyhedrons in the feature space. Denote this
finite number as F , and these unions as U1, . . . ,UF . Define γ(Φ) = k if {x : T (Φ,x) = j}=
Uk. Let Nk be the number of times that γ(φ n) = k in the first N trials. Then

1
N

N

∑
n=1

I(T (φ n,x) = j) =
1
N ∑

k
NkI(x ∈Uk).

By the Law of Large Numbers, Nk =
1
N ∑

N
n=1 I(γ(φ n) = k) converges a.s. to PΦ(γ(Φ) =

k). Taking unions of all the sets on which convergence does not occur for some value of k
gives a set C of zero probability such that outside of C,

1
N

N

∑
n=1

I(T (Φ,x) = j)→∑
k

PΦ(γ(Φ) = k)I(x ∈Uk),

where
∑
k

PΦ(γ(Φ) = k)I(x ∈Uk) = PΦ(T (Φ,x) = j)
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