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Abstract

The Bayesian framework forms a solid foundation for image segmentation. With this
as a basis, an image is modeled as a Markov random field (MRF) with observations in-
corporated with a given tri-map. Although MRF-based methods have proved successful
in interactive or supervised foreground segmentation, high-quality segmentation can be
obtained only when the tri-map is sufficiently discriminative. We argue that the least
Gibbs energy can be formulated as a goal function of a tri-map and can be a power-
ful means of validating the separability of predefined feature distributions. Further, we
propose a split-and-validate strategy for decomposing the complex problem into a series
of tractable subproblems, and suboptimal tri-map optimization is gradually achieved by
making decisions between cluster-level operations. The splitting is determined by a novel
combination of Bregman hierarchical clustering and an information theoretic method for
realizing non-parametric clustering. We have evaluated our method against the Oxford
Flower 17 and Caltech-UCSD Bird 200 benchmarks and show the superiority of tri-map
self-validation in unsupervised foreground segmentation tasks.

1 Introduction
As an intermediate process, foreground segmentation plays an important role in high-level
vision tasks, e.g. image matting and image classification. Of previously reported research, a
large percentage is made up of Markov random field (MRF) based studies [3, 4, 5, 14, 22,
23], in which statistically optimal segmentation maximizes the posteriori probability given
observations incorporated with a given tri-map. A tri-map is an indefinite assignment of each
pixel in the source image to one of two or three classes: foreground, background, and/or
unknown. The segmentation uses the information from the foreground and background re-
gions to reclassify each pixel into foreground or background classes. MRF-based methods
naturally represent the segmentation accuracy and spatial coherence within the Bayesian
framework, but mainly under the assumption that a sufficiently discriminative tri-map is
given, e.g. specified by user interaction [3, 4, 14, 23], learned from ground-truth segmenta-
tions [22], or weakly supervised by using class information [5, 22]. This assumption makes
them unsuitable for generic applications, e.g. when a large number of images are to be pro-
cessed [3, 4, 14, 23] or when the training data are unavailable [5, 22]. Although some
attempts have been made to improve the discriminative power of feature descriptors [11, 14]
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(a) minX E(X |Y,T ) = 2.61×106 (b) minX E(X |Y,T ) = 2.47×106 (c) minX E(X |Y,T ) = 2.42×106

(d) minX E(X |Y,T ) = 3.47×106 (e) minX E(X |Y,T ) = 3.34×106 (f) minX E(X |Y,T ) = 3.20×106

Figure 1: Different tri-maps T exhibit differences in their least Gibbs energies (LGE)
minX E(X |Y,T ) when incorporated in the segmentation of the same image Y . Consider the
tri-maps on the left of each sub-figure. The images on the right show the segmentation X that
obtains the minimal cut of the MRF graph. A less ambiguous tri-map is usually conducive
to a lower LGE than a less discriminative one, even if they lead to similar segmentations.
Based on this observation, in this paper, we introduce the LGE as a measure that captures the
separability of predefined appearance distributions and incorporate it in a split-and-validate
strategy for foreground segmentation.

or the MRF model [6, 26] given a low-quality tri-map, very little attention has been paid to
enhancing the discernment of the tri-map itself. This constitutes the main problem that we
tackle in this paper.

In contrast to the previous studies, which depended on strong assumptions, our aim is
unsupervised foreground segmentation under only one weak (realistic) assumption. Namely,
we assume that the location of a foreground object is a normal deviate in the image space,
whose expectation lies near the center of the image, and with a sufficiently low standard
deviation. Based on this assumption, a simple solution is to assume a rectangle of sufficient
scale centered in the image as the tri-map [5], as shown in Fig. 1(b) and 1(e). The segmen-
tation can thus be obtained by minimizing the configuration energy combining boundary
regularization with appearance models predefined on the basis of the tri-map. When the dis-
tributions offer very low separability, as shown in Fig. 1(a) and 1(d), the appearance models
become non-contributory and the minimization over-fits the boundary regularization. As a
consequence, we expect to see a high minimal energy. When two tri-maps lead to the same
segmentation, i.e. to the same boundary regularization, as shown in Fig. 1(b) and 1(c), the
tri-map with the larger overlap in the feature distributions indicates a higher entropy.

Using this observation as a basis, we develop our contributions as follows. We formulate
the least Gibbs energy as a tri-map goal function and propose a split-and-validate strategy
to decompose the complex problem into a series of tractable subproblems (Section 2). A
suboptimal tri-map optimization is gradually obtained by making decisions between cluster-
level operations. The splitting is determined by a novel combination of Bregman hierarchical
clustering and an information theoretic method to realize non-parametric clustering and to
balance the clustering quality and computational efficiency (Section 3). We comprehensively
evaluate our method using the Oxford Flower 17 and Caltech-UCSD Bird 200 benchmarks,
and present extensive experiments demonstrating the superiority of self-validation in unsu-
pervised foreground segmentation tasks (Section 4).
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1.1 Literature Review

Energy-based segmentation methods [8, 28] wherein segment characteristics are modeled
through MRFs have interested researchers over the past several years. A desired segmenta-
tion is defined as one that maximizes the product of the class conditional distribution (charac-
terizing features such as intensity) and the a priori probability distribution (imposing spatial
connectivity constraints). Among MRF-derived methods, there is a prominent category of
techniques [3, 4, 7, 9, 14, 23, 26] that employ graph representations for image segmentation.
Boykov and Jolly [3] represented an image as an undirected graph and used a configuration
energy that incorporates background-foreground appearance models derived from intensity
histograms of a tri-map, and boundary regularization as soft constraints. A graph-cut frame-
work based on the min-cut criterion [4] was utilized to uncover a globally optimal solution
as the final segmentation outcome. This work was further enhanced by Rother et al. [23],
who devised an iterated graph-cut methodology called GrabCut, where color information is
incorporated into the configuration energy using a Gaussian mixture model. Han et al. [14]
established a color image segmentation algorithm by extending Rother et al.’s methodology
to accommodate multi-scale nonlinear structure tensor texture features. Feng et al. [9] pro-
posed an unsupervised extension of the binary graph cut known as a graduated graph cut,
with an architecture that is capable of the self-validated labeling of MRFs. Apart from the
above procedures, methods involving label costs [7] and segmentation overlap costs [26] in
the configuration energy have been developed for driving various imaging applications.

In the literature related to foreground segmentation, a significant effort has been devoted
to the development of supervised techniques for achieving results that are more tailored to-
wards user requirements. These techniques can also be categorized in terms of interactive
methods [3, 4, 14, 23] and learning-based methods [1, 5, 16, 19, 20, 22]. Interactive meth-
ods start with user-specified contours [3, 4] or regions [14, 23] to compute the foreground-
background appearance model. Degrees of interactive effort range from editing individ-
ual pixels, at the labor-intensive extreme, to touching an image in a few locations. These
methods are of great practical importance in image editing, but are labor-consuming when
a large number of images are to be processed. Nilsback and Zisserman [22] assumed that
ground-truth segmentations are available and the objects are star-shaped polygons, and they
described an algorithm for segmenting flowers in color images. Najjar and Zagrouba [20]
as well as Angelova et al. [1] removed the assumption of the geometric shape and proposed
segmentation methods for flower classification. Another group of studies, known as co-
segmentation studies, considered sets of images where the foreground appearance share sim-
ilarities that can be leveraged to obtain accurate segmentations. Discriminative learning on
super-pixels is used by Joulin et al. [16] for simultaneously enforcing spatial smoothness as
well as finding the foreground-background boundary in a super-pixel (feature) space. Unlike
this study, Chai et al. [5] decouples spatial smoothness enforcement and the classification of
super-pixels, so that these steps are performed consecutively rather than simultaneously. Co-
segmentation ranks as one of the most advanced research topics in the literature. However,
this group of methods suffers from limited utility when the ground-truth class information is
unavailable beforehand.

Citation
Citation
{Diplaros, Vlassis, and Gevers} 2007

Citation
Citation
{Zhang and Ji} 2010

Citation
Citation
{Boykov and Jolly} 2001

Citation
Citation
{Boykov and Kolmogorov} 2004

Citation
Citation
{Delong, Osokin, Isack, and Boykov} 2012

Citation
Citation
{Feng, Jia, and Liu} 2010

Citation
Citation
{Han, Tao, Wang, Tai, and Wu} 2009

Citation
Citation
{Rother, Kolmogorov, and Blake} 2004

Citation
Citation
{Tang, Gorelick, Veksler, and Boykov} 2013

Citation
Citation
{Boykov and Jolly} 2001

Citation
Citation
{Boykov and Kolmogorov} 2004

Citation
Citation
{Rother, Kolmogorov, and Blake} 2004

Citation
Citation
{Han, Tao, Wang, Tai, and Wu} 2009

Citation
Citation
{Feng, Jia, and Liu} 2010

Citation
Citation
{Delong, Osokin, Isack, and Boykov} 2012

Citation
Citation
{Tang, Gorelick, Veksler, and Boykov} 2013

Citation
Citation
{Boykov and Jolly} 2001

Citation
Citation
{Boykov and Kolmogorov} 2004

Citation
Citation
{Han, Tao, Wang, Tai, and Wu} 2009

Citation
Citation
{Rother, Kolmogorov, and Blake} 2004

Citation
Citation
{Angelova, Zhu, and Lin} 2013

Citation
Citation
{Chai, Lempitsky, and Zisserman} 2011

Citation
Citation
{Joulin, Bach, and Ponce} 2010

Citation
Citation
{Meng, Li, Ngan, Zeng, and Wu} 2013

Citation
Citation
{Najjar and Zagrouba} 2012

Citation
Citation
{Nilsback and Zisserman} 2010

Citation
Citation
{Boykov and Jolly} 2001

Citation
Citation
{Boykov and Kolmogorov} 2004

Citation
Citation
{Han, Tao, Wang, Tai, and Wu} 2009

Citation
Citation
{Rother, Kolmogorov, and Blake} 2004

Citation
Citation
{Nilsback and Zisserman} 2010

Citation
Citation
{Najjar and Zagrouba} 2012

Citation
Citation
{Angelova, Zhu, and Lin} 2013

Citation
Citation
{Joulin, Bach, and Ponce} 2010

Citation
Citation
{Chai, Lempitsky, and Zisserman} 2011



4 WU AND KASHINO: TRI-MAP SELF-VALIDATION

2 Tri-Map Self-Validation

2.1 Least Gibbs Energy
In terms of MRFs, the statistically optimal segmentation X̂ maximizes the a posteriori prob-
ability pertaining to an observed image Y and a tri-map T , which is equivalent to minimizing
the Gibbs energy E(X |Y,T ):

E(X |Y,T ) = ∑
p

∑
α

U (α)
p (yp|T )δ (α,xp)+∑

p,q

1−δ (xp,xq)

‖p−q‖
exp(−β‖yp− yq‖) (1)

where the right terms are known as the likelihood (first) and coherence (second) energy
functions at the pixel level. The likelihood energy represents the goodness of labeling pixel
p by xp. Here, xp ∈ {0,1} and yp, respectively, are the label and the descriptor of each pixel
p. α ∈ {0,1} is the label denoting the foreground or background and δ (·, ·) denotes the
Kronecker delta. U (α)

p represents the appearance model, e.g. the negative log likelihood of
a histogram [1, 3, 22], a Gaussian mixture model (GMM) [14, 23], or a model learned from
a texon [18] or k-means centroids [9]. The coherence energy extends the Potts model, and
measures the boundary regularization feasibility, which represents the spatial connectivity.

Several example tri-maps are shown in Fig. 1. Here, we define the least Gibbs energy
(LGE) as follows:

LGE(T |Y ) = min
X

E(X |Y,T ) (2)

Obviously, LGE is a function of the variable T with a given observation Y , and is no longer
dependent on the segmentation X . As shown in Fig. 1, a less ambiguous tri-map T usu-
ally leads to a lower LGE(T |Y ) than a less discriminative one, even if they lead to similar
segmentations.

This observation is also supported by the convergence property of iterated graph cut [23].
This method considers the segmentation X̂ minimizing the Gibbs energy in the previous iter-
ation as the tri-map T (t) of the current iteration, and optimizes energy function E(X |Y,T (t))
over the segmentation. These steps are repeated recursively. In practice, minX E(X |Y,T (t))
decreases monotonically and the iteration is guaranteed to converge to a local minimum
sensitive to the initial tri-map T (0). If we assume the fixed point X̂ after the convergence cor-
responds to a perfect segmentation, the tri-map T̂ that led to this perfect segmentation can
be considered the most desired tri-map and that fits the data distribution in the foreground
and background. The convergence of the iterated graph cut indicates that the LGE(T̂ |Y ) of
T̂ must be lower than that of any other arbitrary tri-map. On the basis of this observation, we
develop our split-and-validate method in the next section.

2.2 Split and Validate
A desired tri-map T̂ can be defined as one that minimizes LGE(T |Y ), more specifically T̂ =
argminT minX E(X |Y,T ). Straightforwardly solving this problem is NP-hard. Instead, we
propose a split-and-validate strategy, which decomposes the complex problem into a series of
tractable subproblems. The splitting is determined by the non-parametric clustering method
described in Section 3. After splitting, the image is abstracted as a set of pixel clusters. Our
tri-map refinement is based on the following two types of cluster-level operations:

1 (Retaining) For a tri-map T , keeping T unchanged, as denoted by T ← T .
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(a) Image. (b) Clusters. (c) Clusters sorted by centrality.

(d) Refinement by cluster-level operations. (e) Results.

Figure 2: Working flow of tri-map self-validation. Validation is initialized with the rectangle
in the center (50% of the image size). In 2(c), the pixels in the current cluster are in white. In
each column of 2(d), the upper image is the current T while the lower image is the tentative
T ′ to be validated. The reals above/below each image are the LGEs (unit: 106) of T or T ′.
The segmentations derived from T (0) and the refined T̂ are compared in 2(e).

2 (Contracting) For a tri-map T = {TB,TF}, in which TB and TF are background and
foreground regions, and a pixel cluster c, subtracting c from TF and adding c to TB, as
denoted by T ←{T ′B,T ′F} with T ′B = TB∪ c and T ′F = TF \ c.

The self-validation scheme is discretized to a tree-structured evolution process (Fig. 2(d)).
The tri-map T (0) = {T (0)

B ,T (0)
F } is first treated as a rectangle in the center, i.e. we assume the

location of a foreground object to be a normal deviate in the image space whose expectation
lies near the center. T (0) can be modeled as a binary MRF. Using the appearance model U (α)

p

and the corresponding energy assignment (Eq. 1), we can obtain LGE(T (0)|Y ).
All pixel clusters c1,c2, · · · ,cG are then sorted in ascending order of centrality, which

is defined as the ratio of ‖T (0)
F ∩ c‖ over ‖T (0)

F ‖. This is motivated again by the above as-
sumption, and a cluster of pixels is considered more likely to belong to the foreground if its
location is closer to the center of the image. T (0) is then arguably refined by the operation
contracting with the cluster c at the top of the sorted queue, which leads to a tentative tri-
map T ′(0) and in consequence LGE(T ′(0)|Y ). A tri-map T is contract-able if the operation
contracting leads to a lower LGE than retaining, i.e. LGE(T ′|Y ) < LGE(T |Y ). If so, we
update T to T ′, and continue this process iteratively until all clusters are incorporated in the
validation. Then, we obtain the final segmentation by using an iterated graph cut [23] with
the refined T̂ . As shown in Fig. 2(e), for the tri-map initialized without supervision, the over-
lap between the foreground in yellow and the background in blue is too strong, which makes
the image hard to segment. However, self-validation is able to define the desired tri-map
accurately and in consequence define the segment automatically.
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3 Distortion-Based Bregman Hierarchical Clustering

3.1 Determining Number of Pixel Clusters

A clear problem with pixel clustering is finding a way to specify the number of clusters to de-
tect. Under-clustering may lead to significant confusion between foreground and background
pixels, while over-clustering could result in a larger number of validations. Of the algorithms
that solve this problem [12, 13, 15, 17, 24], we chose the distortion-guided method [24] be-
cause it is non-parametric, mathematically supported, and computationally simplex.

Consider a p-dimensional variable Y consisting of a mixture of G distributions. Given a
set of k cluster centroids, we can define the pooled mean Mahalanobis distance per dimen-
sion between Y and the centroids as a distortion dk of the k-clustering. Sugar and James [24]
proved that the transformed distortion d−p/2

k is approximately zero for k <G, and then jumps

suddenly and begins increasing linearly for k ≥ G. Jumps in d−p/2
k then signify reasonable

choices for k. Sugar and James [24] generated the k cluster centroids using a k-means algo-
rithm with a varying k ∈ [1,K]. This requires K-fold computations for k-means as well as for
distortion calculation. Instead, we propose using a Bregman hierarchical clustering (BHC)
method to generate clusters.

3.2 Bregman Hierarchical Clustering

Garcia and Nielsen [10] have shown that agglomerative hierarchical clustering can be ap-
proximated and accelerated by considering the data to be a mixture f of N ≥G distributions,
e.g. Gaussian or Poisson distributions etc., and instantiating the hierarchical clustering to this
mixture with Bregman divergence. BHC [10] leverages the symmetric Bregman divergence
between two distributions as the linkage criterion, which allows us to identify the two closest
distributions in order to merge them into a meta-distribution. As a result of this merging, the
number of distributions (starting at N) decreases by one after each iteration until there is one
distribution containing all the components.

BHC determines the optimal clustering g as the one with the minimum number of compo-
nents that reaches a minimum approximation quality d( f ,g)≤ τ defined by the user, where
d(·, ·) is the symmetric Bregman divergence between the mixtures. Instead, we adapt the
distortion-guided criterion [24] to BHC to achieve a non-parametric determination of g.
Here, the pooled mean Mahalanobis distance described in Section 3.1 can be reduced to
the pooled mean variances of Y in each cluster, which equals tr(Σ) with Σ denoting the co-
variance matrix if we consider a multivariate Gaussian distribution. The determination thus
requires only one computation, namely the initialization of the mixture of N Gaussian distri-
butions, following which the natural parameters {µ,Σ,ω} of each distribution are calculated.
In the merging phase, Σ̂ of the meta-distribution ĉ merged from the previous distributions ci
and c j in each iteration can be efficiently updated (not requiring N-fold computations for
generating clusters or for distortion calculation). We compare the non-parametric solution
of clustering generation with the original BHC in Section 4.3.
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Table 1: Comparison of various self-validation criteria 1.

MJI (%) MNHS (%)

GC [23] LGE LLE JD GC [23] LGE LLE JD

89.3 91.7 90.8 57.3 95.9 96.7 96.4 84.9
1 OF17 is used in this experiment. Self-validation is initialized with the rectangle in the center (50% of the image size). Given
a tri-map, the segmentation is achieved by a five-iteration graph cut for all methods. MJI: Mean Jaccard Index. MNHS: Mean
Normalized Hamming Similarity. GC: Graph Cut. LGE: Least Gibbs Energy. LLE: Least Likelihood Energy. JD: Jaccard Distance.

4 Experimentation

4.1 Setting

For our evaluation, we use the Oxford Flower 17 (OF17) [21] and Caltech-UCSD Birds
200 (CB200) [27] datasets. OF17 contains 17 flower species with 80 images per category.
846 of them have hand-annotated segmentations. CB200 contains 200 bird categories and
6033 images in total, in which rough segmentation masks are provided and this allows us
to compare segmentation accuracies. The foreground-background overlap in terms of color
distributions is very strong in CB200 making this dataset much more challenging than OF17.

Given a ground-truth segmentation, the accuracy can be expressed in two ways. Let
T P, FP, FN, and T N denote the numbers of true-positive, false-positive, false-negative,
and true-negative pixels, respectively. One criterion [5, 16, 22] is the mean of the Jaccard
index (MJI) between the estimated foreground and the ground-truth foreground, in which
JI equals T P/(T P+FP+FN). The other criterion [5, 16] is the mean of the normalized
Hamming similarity (MNHS), in which the NHS exactly equals the accuracy defined in
binary classification. As suggested by Garcia and Nielsen [10], we chose N = 32 as the
number of Gaussian components used in clustering initialization (Section 3.2).

4.2 Comparison of Self-Validation Criteria

To the best of our knowledge, few studies have tackled the formulation of the ambiguity of
a tri-map. In this section, we compare the LGE defined in Eq. 2 with two alternatives. It
should be noted that the coherence energy based on the Potts model in Eq. 1 is completely
independent from the tri-map T . We first determine how much effect this independent term
has on tri-map self-validation by defining the criterion as EL(Y |X̂ ,T ), which is the least like-
lihood energy (LLE) at the image level. On the other hand, from the convergence property of
iterated graph cut, we can deduce that a desired tri-map should be the desired segmentation
itself while an ambiguous tri-map should have limited shape similarity to its corresponding
segmentation. The criterion can thus be defined by a shape similarity, namely the Jaccard
distance (JD) between T and its corresponding segmentation X̂ . Table 1 compares the seg-
mentation accuracy obtained using various criteria.

From Table 1, we can see that both LGE and LLE outperformed the initial tri-map, while
LGE slightly outperformed LLE. This is because, although T is independent from the Potts
model, the minimization of the Gibbs energy does depend on this coherence energy. A de-
sired tri-map should enable us to realize a segmentation with both a small feature distribution
overlap and a low spatial connectivity between the segments, so LLE alone is insufficiently
informative to capture the discernment of T . JD failed to correctly measure the tri-map dis-
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Table 2: Comparison of non-parametric BHC and previous studies 1.

OF17 MJI (%) MNHS (%)

Tri-Map Scale 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

GC [23] 89.3 87.6 85.7 81.8 76.5 95.9 94.5 93.1 90.1 85.0
BHC (k = 9) [10] 90.9 89.7 86.2 81.9 70.0 96.5 95.7 93.5 89.6 78.3
BHC-BD (τ = 7.0) [10] 91.8 90.2 89.0 84.9 79.4 96.8 95.9 94.8 91.4 86.1
BHC-RD 91.7 91.0 88.7 86.0 80.4 96.8 96.3 94.9 92.5 86.8

CB200 MJI (%) MNHS (%)

Tri-Map Scale 0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9

GC [23] 35.7 32.5 28.9 25.5 22.7 68.2 60.6 52.3 44.5 37.5
BHC (k = 9) [10] 36.4 33.1 28.9 25.2 21.7 71.8 65.0 56.8 48.9 40.4
BHC-BD (τ = 4.0) [10] 36.6 33.9 30.9 27.9 24.6 72.7 66.7 60.5 54.2 46.8
BHC-RD 36.0 33.5 30.9 28.6 25.8 72.9 67.1 61.2 56.1 49.5
1 For BHC and BHC-BD, the parameters in the brackets are those resulting in the corresponding highest MJI. OF17: Oxford Flower
17. CB200: Caltech-UCSD Birds 200. BHC: Bregman Hierarchical Clustering. BHC-BD: BHC using Bregman Divergence as
stopping criterion. BHC-RD: BHC using Rate Distortion as stopping criterion.

cernment. This may be because, although the shape of a desired tri-map should be similar to
that of its segmentation, an ambiguous tri-map does not necessarily reflect this assumption.

4.3 Comparison of Clustering Criteria

In this section, we compare the non-parametric BHC with the BHC methods that use various
stop criteria. We use BHC to denote the clustering constraining the number k ∈ (1,10] of
components, and use BHC-BD to denote the clustering constraining the minimum approxi-
mation quality τ ∈ [0.0,10.0]. Although the tri-map can be centrally initialized without any
supervision, it is hard to finely determine the scale of the tri-map without any knowledge of
the scale of the object of interest. A generic method should enable reliable segmentations
over various configurations of tri-map initialization. To evaluate the methods from this view-
point, we vary the rectangular scale from 50% to 90% of the image size. Table 2 compares
the best performance of various methods.

In general, all self-validation methods outperformed GC [23]. The superiority of BHC-
BD to BHC demonstrates that constraining the quality of distributions is more appropriate
than constraining the number of distributions. Even so, BHC-BD requires tuning to achieve
its best performance shown in Table 2. In unsupervised foreground segmentation, cross vali-
dation is obviously impossible since the training data are unavailable, which limits the utility
of BHC-BD. In contrast, our method is non-parametric, i.e. it is not dependent on the speci-
fication of the quality or the number of distributions. It achieved the highest performance in
most cases, and even for the few exceptions, was comparable to the finely-tuned BHC-BD.
Figure 3 compares the segmentations initialized by the same tri-map (50% of the image size).
The segmentation without tri-map optimization [23] failed in most cases because of the small
object size and the large number of background pixels mislabeled as foreground (example
first from the right). In contrast, our method successfully removed confusing regions even
when the foreground showed high color similarity to the background (example second from
the right). The higher robustness of our method as regards low-quality tri-map initialization
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Figure 3: Example of tri-map optimization and segmentation. From top to bottom: initialized
tri-map (used in both GC [23] and our method), segmentation of GC, optimized tri-map, and
our segmentation.

is also reflected in Table 2. For the challenging CB200 dataset, our method achieved a 3.1%
MJI improvement and a 12.0% MNHS improvement compared with our baseline when the
rectangular scale was enlarged to 90%. Many more comparative results are provided in the
supporting documentation.

4.4 Comparison with State-of-Art Methodologies

In this section, we compare our method with advanced studies, including both supervised [5,
16, 20, 22] and unsupervised [2, 25] methodologies, by using the OF17 dataset. Because
both coarse-grained (flower) and fine-grained class information is available in this dataset,
it is inevitable that methods interleaving the segmentation and construction of class-specific
appearance models have an advantage over any unsupervised method including ours. Nev-
ertheless, it is interesting to see how well self-validation can fare against such methods.
The comparison is shown in Table 3. In the experiments, self-validation performed worse
than the flower-geared method [22] and Chai et al.’s method [5], where the latter uses both
coarse- and fine-grained class information. Apart from that, our method is competitive, and
in particular it outperforms Joulin’s [16] and Najjar’s [20] co-segmentation methods. Also,
our method is the top-performing unsupervised method.
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Table 3: Segmentation performance on OF17 dataset reported in the literature.

Supervised Method MJI (%) MNHS (%)

Nilsback and Zisserman [22] 93.0 –
Joulin et al. [16] 75.8 86.6
Chai et al. [5] 94.7 98.3
Najjar and Zagrouba [20] 84.0 –

Unsupervised Method MJI (%) MNHS (%)

Aydin and Ugur [2] 87.0 –
Suta et al. [25] 90.0 89.0
Our Method 1 91.7 96.8
1 Note that our method differ completely from Chai et al.’s method [5]. The former is not a co-segmentation method, and does not
require any class information.

5 Conclusion
We presented a tri-map self-validation method that is arguably simple, and yet it outper-
formed previously reported techniques based on unsupervised methods [2, 25] and was com-
petitive with supervised methods [5, 16, 20, 22], which treat images dependently. We have
shown that the least Gibbs energy can be a strong cue for capturing the discriminative power
of a tri-map, which is further incorporated in a split-and-validate strategy for non-parametric
tri-map optimization. In the future, we intend to examine whether we can optimize the tri-
map and infer the appearance models simultaneously such that a simpler and more efficient
optimization can be easily incorporated into any graph cut-based segmentation application.
On the other hand, we have not discussed the loss in the translation to the split-and-validate
problem as an approximation of the NP-hard problem mentioned in Section 2.2. These issues
constitute our future direction.
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