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Abstract

This paper focuses on the problem of object detection when the annotation at training
time is restricted to presence or absence of object instances at image level. We present
a method based on features extracted from a Convolutional Neural Network and latent
SVM that can represent and exploit the presence of multiple object instances in an image.
Moreover, the detection of the object instances in the image is improved by incorporating
in the learning procedure additional constraints that represent domain-specific knowledge
such as symmetry and mutual exclusion. We show that the proposed method outperforms
the state-of-the-art in weakly-supervised object detection and object classification on the
Pascal VOC 2007 dataset.

1 Introduction
In weakly supervised object detection where only the presence or absence of an object cat-
egory as a binary label is available for training, the common practice is to model the object
location with latent variables and jointly learn them with a model for the object appearance
[2, 15, 19]. An ideal weakly supervised learning algorithm for object detection is expected
to guide the latent variables to a solution that disentangles object instances from noisy and
cluttered background. The learning algorithm should lead the appearance model and the
latent variables to best explain the correlation between the training images and their binary
labels. However, in practice, maximizing the likelihood of observed data or minimizing the
data-dependent cost function during training may result in latent variables that do not capture
the expected regularities. Thus, it is crucial to regulate the latent distribution such that they
encode useful structures of the data.

A possible way to properly learn the latent variables is to provide a meaningful initial-
ization so that the optimization does not get stuck in a local minimum. In weakly supervised
object detection the initialization of the latent variables involves providing good initial lo-
cation for each object instance. Initialization strategies for the latent variables in weakly
supervised object detection have been presented in several works [3, 15, 24]. However, this
is an intertwined problem because if we knew where the object is, the task would no longer be
a weakly supervised problem. Other methods [14, 17] focus on the optimization procedure,
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to make it smooth and as convex as possible (continuation methods). Although we do not
deny the importance of the two previously mentioned factors, we argue that, for an effective
learning of the latent variables and improved localization performance, controlling the latent
variable distribution is crucial. In particular we focus on relaxing too strict constraints of the
model and we introduce additional prior knowledge that has not been previously considered.

In [2, 15] it is implicitly assumed that each image contains only one object. This is a very
restrictive assumption that does not allow the method to exploit the complete training data
because additional instances of the same class in the same image are discarded. Moreover,
and even worse, the additional instances are considered as background and therefore the
model is forced to learn them as “negative samples”. An elegant way to overcome this prob-
lem is by substituting the maximization over the latent variables with a soft-max function.
The soft-max is a smooth, differentiable approximation of the max function that amplifies
high scoring configurations and reduces the influences of the low scoring ones. By defini-
tion, it does not restrict the number of “chosen” elements. In this way we have the two-fold
advantage of (i) being able to consider multiple objects in a single image and (ii) using a
smooth function that makes the optimization easier.

Furthermore, prior knowledge about the problem is a valuable source of information
that can be exploited to better drive the latent variables. However, generally this additional
general knowledge about the problem is not considered because either it is difficult to repre-
sent or it makes the inference computationally very expensive. Instead we include this prior
knowledge via posterior regularization as proposed in [11]. In our case we want to exploit
the fact that (i) each horizontal mirror of an object is still a valid object (object symmetry)
and (ii) the same spatial region (in our case a bounding box) cannot represent more than one
object class (mutual exclusion).

To exploit the first point the commonly used solution is to add horizontally flipped ver-
sions of the training images as extra training data. While the additional data guides the model
to score high for some latent configuration on both original and flipped images, it does not
enforce to select the same (but mirrored) location for both images. We can say that the prob-
lem is too relaxed. On the other side one can localize by jointly evaluating an image part
with its mirror together. In this case the algorithm can evaluate only perfectly symmetric
representations. This limits the optimization space and makes the optimization more diffi-
cult, i.e the problem is too constrained. Instead, we introduce a posterior regularization that
enforces the scores on each bounding box and its mirrored one to have the similar values. In
section 4 we show the advantage of our formulation compared with the others.

Spatial co-occurrence of multiple objects has been exploited in [7] for supervised object
detection. Desai et al. [7] learn the relative spatial relationships between pairs of object in-
stances and categories. However, this learning of relationships relies on the supervision of
the object locations and involves a computationally expensive optimization. For the weakly
supervised case, jointly estimating the object localizations and interactions between different
instances is a significantly more challenging problem. Therefore instead of parameterizing
the spatial relations and learning those parameters, we enforce an additional posterior reg-
ularization strategy [11]. Namely, we transform the individual binary detection problems
for all object categories into a single multi-label problem and impose a regularization term
that discourages configurations where multiple categories have high probability for the same
bounding box. In section 4 we empirically show the contribution of this proposed regular-
ization.

The main contributions of the paper are: (i) we show that in a weakly-supervised setting,
regulating the latent distribution and properly driving the latent variables are crucial for good
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performance and lead to state-of-the-art results in both classification and detection, (ii) we
show how to introduce in the weakly supervised detection specific prior knowledge that helps
to drive the latent variables by means of posterior regularization, and (iii) we better model
the weakly-supervised object detection problem via the soft-max where multiple objects in
the same image are considered and at the same time the optimization is smoother.

The rest of the paper is structured as follows: in section 2 we discuss related work. In
section 3 we formally introduce our method for learning and inference. Finally experiments
are detailed in section 4 and conclusions are drawn in section 5.

2 Related Work
Discriminative supervised classifiers have been proven to be very effective and accurate tools
for learning the correlation between input and precisely annotated outputs. In the literature
there has been a substantial amount of work that proposes weakly supervised algorithms for
classification. The proposed weakly supervised method aims to jointly label the missing
annotations and learn a classifier based on these labellings. This results in solving a non-
convex problem which is typically optimized via an alternating Expectation Maximization
(EM) kind of algorithm. Due to the non-convexity, these methods are prone to converge into
a local minimum. To overcome the problems, previous work can be divided into two groups
that focus on clever initialization strategies and on converting the optimization into a convex
or smooth one, which is in general easy to optimize.

The non-convex optimization is notoriously known for its sensitivity to initialization.
Many previous works [3, 15, 24] focus on developing initialization strategies for the weakly
supervised detection problem. Deselaers et al. [8] initialize the latent variables with the
highest “objectness” score [1]. Kumar et al. [15] propose a self paced method that starts
learning on a small set of samples and gradually adds harder samples to training. Bilen et
al. [3] employ exemplar background detectors to initialize latent variables. Song et al. [24]
initialize the latent variables by discovering discriminative and relevant windows via a sub-
modular search. Cinbis et al. [5] show that an iterative multi-fold multiple instance learning
(MIL) prevents overfitting on the initial estimates.

The second line of research focuses on developing smoother approximations of the non-
convex problem and thus making the problem less sensitive to initialization. Joulin et al. [14]
propose a convex relaxation method and solve the transformed problem with semi-definite
programming. Miller et al. [17] employ an entropy measure to minimize the uncertainty
over the distribution of latent parameters. Song et al. [24] apply the smoothing technique of
Nesterov [18] to the latent SVM’s object function.

Designing initialization strategies and smoothing the non-convex optimization problems
have proven to be useful in many learning applications. Likewise, we show that smoothing
the learning provides a better learning for object detection and improves the results. This
improvement is also related to the less constrained modelling of the problem, where multiple
objects in the same image can be considered. Moreover, in this paper, inspired by [11],
we focus on efficiently incorporating indirect supervision via prior knowledge. Ganchev et
al. [11] introduce a probabilistic framework that can express and enforce data-dependent
constraints on latent variable distribution with posterior regularization. The framework is
shown to improve the performance on natural language processing problems such as word
alignment and multi-view learning. Here we show that posterior regularization is also useful
for weakly-supervised detection.
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3 Learning and Inference

In this section we formally introduce the problem of learning to localize object classes in
images as a weakly-supervised discriminative problem based on latent structural SVM [26]
(section 3.1), how to relax the problem (section 3.2) and finally how to include posterior
regularization (section 3.3).

3.1 Latent Structural SVM optimization

Let x∈X , y∈ {−1,1} and h∈H denote the input, output and latent variables of our problem
respectively. In our context, x, y, h correspond to an image, its label and a window (or
bounding box). Following the setting in [26], we consider a linear prediction rule in a joint
input/output/latent spaceO. We define an input/output/latent mappingΦ(x,y,h)∈X ×Y×
H→O ⊂Rd such that

Φ(x,y,h) =

{
~0 if y6 0
φ(x,h) if y > 0

where ~0 is a d dimensional 0 vector and φ(x,h) is a representation of a window h cropped
from image x, i.e. DeCAF features [6] with d= 4096 in our experiments.

The prediction y∗ of a previously unseen input x is for a given parameter vectorw ∈Rd

defined as:
y∗ = argmax

y∈Y
(max
h∈H

w ·Φ(x,y,h)). (1)

Given a set of training samples S = {(xi,yi), i = 1, . . . ,N}, the learning task is to find
the parameter vector w∗ that best predicts the outputs for the inputs. For a given w, the loss
on the i-th sample is measured by a loss function l(w,xi,yi). The empirical loss for the
training samples with an additional `2 regularizer (denoted as ‖.‖) is given as

L(w;S,λ) =
1

2λ
‖w‖2 +

n∑
i=1

l(w,xi,yi) (2)

where λ is the regularization constant. The optimal parameter vector w∗ can be found by
minimizing the regularized loss

w∗ = argmin
w
L(w;S,λ) (3)

There are various ways to design the measure of mismatch l(w,xi,yi) between the input and
output. One popular measure is the max-margin formulation of [26]. Its margin rescaling
form with latent variables amounts to:

lm(w,xi,yi) = max
y,h

(
w ·Φ(xi,y,h)+∆(yi,y)

)
−max

h
w ·Φ(xi,yi,h) (4)

where ∆(yi,y) is zero-one error, i.e. ∆(yi,y) = 0 if yi = y, 1 else. The basic idea is to learn
the weights such that score of (xi,yi,h∗) with h∗ = argmaxhw ·Φ(xi,yi,h) is bigger than
(xi,y,h) for all alternatives y ∈ Y \ {yi} and h ∈ H with a larger margin for those y with
larger loss.
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3.2 Relaxing the problem with soft-max
While the max-margin latent learning is justified for various applications, in the context
of weakly supervised detection, it is somehow restricted to exploit only a single positive
bounding box per image, since each positive image is represented only by the max scoring
latent parameter. In order to alleviate this restriction, we replace the “hard” max in (4) with
the “soft” max as in [12, 23]:

ls(w,xi,yi) = log
∑
y,h

exp
(
w ·Φ(xi,y,h)+∆(yi,y)

)
− log

∑
h

exp
(
w ·Φ(xi,yi,h)

)
(5)

Unlike Eq. 4 that finds the max scoring latent variable, the soft-max margin approach Eq. 5
marginalizes over the latent variable space H. Thus it can represent an image with multiple
latent variables and utilize more positive data in training. At the same time, using soft-max
helps to make Eq. 2 smoother and this enables the use of fast gradient-based Quasi-Newton
optimization techniques such as the LBFGS algorithm [16]. One can still use the alternating
optimization techniques such as Concave Convex Procedure (CCCP) [27] or Block Coor-
dinate descent [10] with these Quasi-Newton methods. However, we empirically find that
directly optimizing the soft-max formulation with the LBFGS converges faster and gives
slightly better performance for our experiments.

3.3 Posterior Regularization
Both the max and soft-max margin formulations that are based on a dot product between
the parameter vector w and the joint feature map Φ. So they are in practice very simplistic
models for object detection. On the positive side, we have the aforementioned optimization
tools to efficiently minimize the optimization problem in Eq. 3. However, without direct su-
pervision, an inherent problem with such learning is that the optimization may not guide the
latent variables towards the intended regularities of the application at hand. We focus on in-
corporating regularization strategies on latent variables arising from prior knowledge. To do
so, we define two regularization terms that avoid certain latent configurations by restricting
the model space.
The symmetry term is based on the assumption that if an image part contains an object
instance, its horizontal mirroring should also be a valid representation for the object class.
Horizontally mirroring training images and adding them to learning is a common practice to
augment the training data and to boost the results. One would expect a learning algorithm to
have the same posterior distribution of latent variables for an image and its flipped version
in object detection. However, this is usually not the case unless one uses perfectly invariant
features to flipping. Here, we propose a way to impose such behavior. We first define the
posterior for a latent parameter given an input x, its label y and parameter vectorw by using
the soft-max formulation of Eq. 5:

p(h|x,y,w) =
exp{w ·Φ(x,y,h)}∑

h∈H exp{w ·Φ(x,y,h)}
. (6)

Then we introduce a Kullback-Leibler (KL) divergence term that encourages similarity be-
tween the probability of latent variables between a positive (i.e. yi = 1) image (xi) and its
flipped version (x̄i):

Dkl(x
i, x̄i,yi,w) =

∑
h∈H

p(h|xi,yi,w)
(

log(p(h|xi,yi,w))− log(p(h̄|x̄i,yi,w))
)

(7)
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where h and h̄ correspond to a window and its flipped version. The posterior regularization
term PRsym for symmetry is written as a symmetrized KL divergence for (xi,yi):

PRsym(xi,yi,w) =
1
2

(
Dkl(x

i, x̄i,yi,w)+Dkl(x̄
i,xi,yi,w)

)
. (8)

The mutual exclusion term is used when multiple object categories are present in an image.
We use the prior knowledge that instances of different object categories do not lie in the
same part of the image (same window), therefore we penalize the cases when a window
is highly probable for more than one class. This decision involves a joint optimization for
all classes (i.e. a multi-label setting). Let K denote the number of object categories and
Yi ∈ {−1,1}K denote a K dimensional binary array that contains the labels of image xi such
that Yik ∈ {−1,1} is the label for the object category k. Modifying the loss in Eq. 5 for the
multi-label setting gives:

lml
s (w,xi,Yi) =

K∑
k=1

ls(wk,xi,Yik), (9)

where wk is the parameter vector of the object category k and w is the concatenation of the
wk for all categories. Now we can define the mutual exclusion term for positive label pairs
as:

PRme(xi,Yi,w) =
∑

16j<k6K

Yi
j ,Yi

k=1

∑
h∈H

√
p(h|xi,Yij ,wj)p(h|xi,Yik,wk) (10)

This term produces large costs when a window h of an image x has high probability for
multiple labels. We rewrite our cost function in Eq. 2 by considering Eq. 8, 9 and 10:

L(w;S,λ) =
1

2λ
‖w‖2 +

N∑
i=1

(
lml
s (w,xi,Yi)+

K∑
k=1
Yi
k=1

PRsym(xi,Yik,wk)+PR
me(xi,Yi,w)

)
.

(11)
It should be noted that our method is not limited to a multi-label case. Likewise it can be
modified to exploit consistency on learning hierarchical categories.

4 Experiments
In this section, we first give details about the dataset and our implementation and then we
empirically evaluate our method. We analyse the contribution of each added component
and then compare our results to the state-of-the-art for weakly supervised detection and
classification.

4.1 Implementation Details
We evaluate our method in the Pascal VOC 2007 dataset [9] which allows us to compare
our results to previous work [5, 20, 24]. We follow the standard VOC procedure [9] and
report average precision (AP) on the Pascal VOC 2007 test split. Note that some previous
works [8, 21] have shown results only on VOC 2007 trainval split. Differently from Cinbis
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LSVM SLSVM +flip +PRsym +PRme

aeroplane 37.8 39.8 39.0 40.4 42.2
bicycle 40.1 42.0 42.3 43.9 43.9
bird 24.9 22.7 23.8 22.7 23.1
boat 8.1 9.1 9.1 9.7 9.2
bottle 12.1 12.9 13.0 12.6 12.5
bus 40.7 42.1 42.5 44.7 44.9
car 43.0 42.1 42.1 45.0 45.1
cat 28.2 23.4 26.4 25.9 24.9
chair 0.8 9.3 8.0 7.0 8.3
cow 8.1 21.3 23.7 24.7 24.0
diningtable 11.2 8.0 5.9 8.9 13.9
dog 21.3 17.9 17.4 19.7 18.6
horse 28.7 27.6 28.3 30.0 31.6
motorbike 44.4 41.9 42.8 43.9 43.6
person 11.2 10.8 8.5 12.5 7.6
pottedplant 13.1 18.8 20.2 20.6 20.9
sheep 15.7 19.9 26.2 26.6 26.6
sofa 18.6 18.4 18.8 19.6 20.6
train 34.8 33.5 33.7 35.8 35.9
tvmonitor 10.8 18.2 25.1 24.8 29.6

mean 22.7 24.0 24.8 26.0 26.4

Table 1: Weakly supervised detection results on the Pascal VOC 2007. LSVM and SLSVM
denote max-margin in Eq. 4 and soft-max margin formulations in Eq. 5 resp. +flip indicates
of adding horizontally mirrored training images to the learning. PRsym and PRme denote the
posterior regularization for symmetry and mutual exclusion. The components starting from
+flip are consecutively added on the SLSVM.

et al. [5] that use the extra “truncated” flag to exclude the images with only truncated object
instances, we train with all images but the ones marked “difficult”.

We use recently proposed convolutional neural network (CNN) features from DeCAF [6]
that are pre-trained on the ImageNet ILSVRC 2012. We use the selective search windows
(≈ 1500 windows per image) from [25] to generate the candidate object locations. Similarly
to [13], we crop images using these windows and run the pre-trained CNN on these cropped
images to extract features. The initialization of the model is done setting the initial model
parameter w to ~0 which corresponds to giving the same probability to be an object to every
bounding box.

4.2 Results

As the first baseline, we use our own implementation of [26] in margin rescaling configu-
ration with hard negative mining (as in [10]). We denote the max-margin latent SVM with
LSVM in Table 1. As shown in Table 1, LSVM obtains results comparable with the current
state-of-the-art on weakly-supervised detection based on CNN [24] or Fisher Vectors [5].

As explained in Eq. 5, we smooth the LSVM learning by replacing the hard max with a
soft one and denote this setting with SLSVM in Table 1. The SLSVM formulation obtains
24.0% mAP and improves the LSVM baseline with 1.3 points. Significant improvement can
be seen in the categories with multiple instances such as “chair”, “cow”, “sheep” and “tv-
monitor”. We also illustrate max and soft-max outputs for representative “cow” and “chair”
images in Fig. 1 and observe that soft-max provides a better representation for images with
multiple instances.

In the next step, we add the flipped versions of VOC 2007 trainval images. As expected,
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(a) images (b) max output (c) soft-max output
Figure 1: Visual comparison of max-margin and soft-max margin learning on representative
“cow” and “chair” images. While max outputs a single window, soft-max marginalizes over
all windows and better represents multiple instances. Best viewed in colour.

input image output without PRsym output with PRsym

original flipped original flipped
Figure 2: Output maps of “car” detectors on test images and their flipped versions without
and with posterior regularization for symmetry. Learning with the symmetrical constraints
increase the scores of less confident detections. Best viewed in colour.

input image output without PRme output with PRme

sofa tvmonitor sofa tvmonitor
Figure 3: Output maps of “sofa” and “tvmonitor” detectors for input images. Adding the mu-
tual exclusion regularization helps to separate two distributions by penalizing the bounding
boxes with high probability for both detectors. Best viewed in colour.
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Figure 4: A comparison of our full model to the state-of-the-art weakly supervised detection
methods on the Pascal VOC 2007 test in terms of AP. Our method significantly outperforms
two methods.

adding the flipped images to the training set helps the soft-max margin learning, obtaining
24.8% mAP and 0.8 point improvement on average (indicated as +flip in Table 1). Applying
the regularization on symmetry further improves the mean result by 1.2% (indicated as PRsym

in Table 1). We illustrate the basic idea of symmetry regularization in Fig. 2 and show that
symmetry improves localization when an image or its flipped version have low confidence
on some object instances. We see that low scoring objects become more visible in the output
images of Fig. 2.

We also compare the proposed PRsym to an additional baseline that concatenates a cropped
image and its mirrored version to represent a window during training and testing. The fea-
ture dimensionality of this baseline and thus its inference running time are double of our
method. This baseline obtains a mAP of 24.9% (not shown in Table 1), i.e. a negligible im-
provement over adding flipped images to the training set. This indicates that the symmetry
regularization leads to a better learning and faster inference time than the baseline.

We finally show that adding the second regularization term PRme leads to a further im-
provement of 0.4 point and to a mAP of 26.4%. It obtains significant further improvements
for “diningtable”, “sofa” and “tvmonitor” categories. These categories often co-occur, and
therefore serve as context information for one another. This complicates accurate localiza-
tion. By adding the mutual exclusion term, the detectors are forced to differentiate from one
another and learn what is specific to each individual category. We illustrate the effect of the
mutual exclusion constraint on a representative “sofa”-“tvmonitor” pair in Fig. 3. Adding
the mutual exclusion forces the sofa and tvmonitor detectors to have different probability
maps.

Comparison to state-of-the-art weakly supervised detection: In this part, we compare
our full configuration (i.e. the right-most column in Table 1) to two recent works [5, 24] that
report the best results on this dataset. Those methods also use the window proposals from
[25]. While [5] represents these windows with the high-dimensional Fisher Vectors [22],
[24] relies on the CNN features that are also used in this paper. We show in Fig. 4 that our
full configuration significantly outperforms both baselines.

Comparison to state-of-the-art classification: Since we optimize our weakly super-
vised detection based on the image-level labels, the same trained models for detection can
also be used for image classification. Differently from detection, the score for a given image
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Ours Others
SVM LSVM Full [5] [20]
74.1 77.1 80.9 65.6 77.7

Table 2: Classification results on the Pascal VOC 2007 in mean AP. SVM denotes training
linear SVMs without any localization. LSVM and Full denote the formulation in Eq. 4 and
our full model in Eq. 11. Our method outperforms the state-of-the-art classifiers [5, 20].

is the log sum of all windows scores since we use a soft-max margin learning. We show the
classification results on the Pascal VOC 2007 in Table 2.

We compare our results to our baselines and previous work [5, 20]. For all of our base-
lines, we use the DeCAF features [6]. We do not use the better performing CNN features
from [13] that are fine-tuned on the ground-truth bounding boxes of VOC 2007. As a first
baseline, we train linear SVM on entire images without any localization and denote it as
“SVM”. This obtains 74.1% mAP. As our second baseline, we learn localization with the
Latent Structural SVM [26] (indicated as “LSVM”). This shows that localization improves
classification with 3 points by eliminating confusing background. Finally we run our full
configuration and yield 80.9% mAP and a 6.5% improvement over the SVM setting.

We also compare our results to two recent works [5, 20] in Table 2 and outperform
both the methods. Interestingly, the work by Oquab et al. [20] exploits a different kind
of localization by generating mid-level image representations and requires the ground truth
bounding box annotations to choose better image patches during training. A recent work
[4] that rigorously analyses architecture details of different CNN techniques achieves 82.4%
mAP in the Pascal VOC 2007. This approach is complementary to our method and we plan
to integrate it to our work as future plan.

5 Conclusion

In this paper we propose a set of ideas that addresses and improves the limitations of weakly
supervised learning for object detection. We first show that relaxing the commonly used
latent max-margin classifier with a soft-max enables a smoother optimization and better
representation of images during learning. Then we show that further improvements can
be obtained by introducing domain-specific knowledge that softly enforces symmetry and
mutual exclusion on the posterior latent distribution at learning. A joint learning with the
proposed components contributes to obtain state-of-the-art results in both classification and
weakly supervised detection. It is interesting to see that our weakly supervised results for
object detection come close to what used to be the state-of-the-art under a fully supervised
setting just a couple of years ago [10].
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