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Abstract

The deformable part-based model (DPM) is one of the most influential models for
generic object detection and many efforts have been made to improve the model. Despite
previous work, the problem of how to identify discriminative parts for DPM still remains
largely unexplored. Most DPM based methods rely on a fixed number of parts of rect-
angular shapes, which may not be optimal for some object categories. In this paper, we
present a novel approach to discover parts which can be non-rectangular by exploiting
object structures. Instead of performing greedy part search as in DPM, our part discovery
approach is carried out by first solving a K-way normalized cuts problem and then apply-
ing local refinement. Generally, the parts obtained by the proposed approach can better
fit the object structures. We demonstrate the effectiveness of our approach on PASCAL
VOC2007 and VOC2010 datasets.

1 Introduction

Although object detection has achieved great success on some specific object categories, e.g.
human face [33], it is still difficult for existing methods to detect generic object categories
that have a wide range of appearance variations. The pictorial structure [15] provides an
expressive way to represent objects and has been used in some computer vision applications,
such as object recognition [11], pose estimation [35] and action recognition [34]. One of the
most successful applications of the pictorial structure is the deformable part-based model
(DPM) [13] for object detection. A deformable part-based model of a specific object cate-
gory is comprised by several components which represent different sub-categories and each
component consists of a root which represents the entire object and several parts which can
move relatively to the root to capture structural deformations. DPM can handle viewpoint
changes and appearance variations to a large extent, and achieves competitive performance
on challenging benchmark datasets, e.g. PASCAL VOC2010 [10].

Regarded as a promising model for generic object detection, DPM has received consid-
erable attention from the object detection community and many efforts have been made to
improve it, for example [1, 2, 4, 8, 16, 18, 19, 22, 31]. However, much less work has been
done to discover parts for DPM. Most DPM based methods adopt the greedy search approach
proposed in [13] to initialize a predefined number of parts of rectangular shapes, which may
not be optimal for some object categories. Moreover, object structures are not well exploited

(© 2014. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Viola and Jones} 2001

Citation
Citation
{Fischler and Elschlager} 1973

Citation
Citation
{Felzenszwalb and Huttenlocher} 2005

Citation
Citation
{Yang and Ramanan} 2011

Citation
Citation
{Yang, Y., and Mori} 2010

Citation
Citation
{Felzenszwalb, Girshick, McAllester, and Ramanan} 2010{}

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M  {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Azizpour and Laptev} 2012

Citation
Citation
{C. and F.} 2012

Citation
Citation
{Chen, Zhu, and Yuille} 2010

Citation
Citation
{Divvala, Efros, and Hebert} 2012

Citation
Citation
{Girshick, Felzenszwalb, and McAllester} 2011

Citation
Citation
{Gu, Arbelaez, Lin, Yu, and Malik} 2012

Citation
Citation
{Khan, Anwer, Weijer, Bagdanov, Vanrell, and Lopez} 2012

Citation
Citation
{Levi, Silberstein, and Bar-Hillel} 2013

Citation
Citation
{Song, Wu, Jia, and Zhu} 2013

Citation
Citation
{Felzenszwalb, Girshick, McAllester, and Ramanan} 2010{}


2 ZHOU AND YUAN: NON-RECTANGULAR PART DISCOVERY

Figure 1: Rectangular parts vs. non-rectangular parts. (a) Part configuration discovered by
the greedy search approach. (b-e) Detection examples of the part configuration (a). Red
bounding boxes denotes the matching regions of the root filter. (f) Part configuration discov-
ered by our approach. (g-j) Detection examples of the part configuration (f). It can be seen
that the actual shapes of bicycle seat and handle are better fitted by non-rectangular parts and
the part configuration (f) better matches the structure of a left/right facing bicycle.

by the approach. In [4, 38], a three-layer spatial pyramid structure is used to simplify the
initialization of parts. An And-Or tree model [31] is proposed to select discriminative part
configurations by a dynamic programming algorithm. Although the method can determine
the part sizes for each component automatically, part shapes are still restricted to rectangles.

To address the limitations of the above part discovery approaches, we propose a novel
data-driven approach to discover non-rectangular parts by exploiting object structures. Fol-
lowing DPM, we first learn the root filter for each component of the model and then derive
parts from the root filter: the root filter is enlarged to twice its original size and a specified
number of connected non-rectangular regions are cropped out of the enlarged root filter as
parts such that the obtained part configuration well matches the structure of object examples.
We implement this part discovery approach by solving a K-way normalized cuts problem
[36] followed by local refinement. Compared to the greedy search approach of DPM, our
approach has two advantages (See Fig. | for illustration):

1. The shapes of the parts discovered by our approach can be non-rectangular, which
makes the obtained parts more suitable for matching non-rectangular regions;

2. Generally, part configurations obtained by our approach can better fit object structures
than those obtained by the greedy search approach.

To evaluate our approach, we conduct object detection on two benchmark datasets, PASCAL
VOC2007 [9] and VOC2010 [10]. The experimental results demonstrate the effectiveness of
the proposed approach.

2 Related work

Generative graphic models, e.g. conditional random fields [28, 29] and k-fan statistical mod-
els [5, 24], are commonly used to model object structures. However, for object detection,
these models often cannot compete with discriminatively trained models, e.g. DPM, on
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benchmark datasets. Different from these structure modelling methods, our approach dis-
covers parts in a discriminative way and provides initial parts for DPM to learn a better
detection model. In recent years, many efforts have been made to improve DPM. Sever-
al methods combine different features, such as color attributes [19], scale-invariant feature
transform (SIFT) [4], local binary pattern (LBP) [37] and segmentation features [14], with
histogram of oriented gradients (HOG) [6] to improve the discriminative power of DPM. In
[27], HOG is replaced by histograms of sparse codes (HSC) in DPM, achieving a significant
performance gain. The detection process of DPM for a single object category is accelerat-
ed by employing KD-Ferns [22], leveraging transform [2], and adopting the cascade [12]
or coarse-to-fine [26] detection framework. The recent work [7] exploits locality-sensitive
hashing to efficiently detect a large number of object categories on a single machine. Build-
ing shared intermediate representations for part filters [20, 30] is another way to accelerate
DPM for multiple object categories. Some sub-category clustering methods [1, 8, 18, 21, 31]
are proposed to obtain better sub-categories for DPM. In [1, 16], flexible variants of DPM are
introduced to handle partial occlusions. As shown in [3, 13, 32], contextual information can
be made use of to improve the detection performance of DPM. In addition, category-specific
information, like texture [25] and irregular patches [23], are exploited for refining the results
obtained by DPM.

3 Non-rectangular Part Discovery

3.1 Deformable Part-based Model

The deformable part-based model (DPM) [13] of an object category consists of several com-
ponents representing sub-categories of different orientations or poses. In the model, a com-
ponent is represented by a root filter and some part filters, used for matching the whole region
of an object and capturing finer details of the object, respectively. Part filters are allowed to
move relatively to the root filter to handle structural deformations. Let M. be the c-th com-
ponent of the model with N, part filters. The component M, is defined by a (2N, + 2)-tuple
Be=(Fo,F1,....,Fy.,dy,...,dy,.b), where Fy is the root filter, d; € R* is the deformation
parameters of the part filter F;, and b is the bias term. Each filter F; is an H; x W; array of
n-dimensional weight vectors, where H; and W; are the height and width of F;, respectively.
Denote by P.(X) = {pg, P1,--, Py, } @ matching configuration of the the component M, on
an object example X, where p; = (x,», ;) is the matching location of F; on X. The matching
score of the configuration P.(X) is defined by

N N
S(ﬁwPC(X)) = Zqu)(X)pl) - Zdl W(dxl7dyl)+b7 (1)
i=0 i=1

where ¢ (X, p;) denotes the HOG feature [6] extracted from the matching region of F; at
the location p; on X and w/(dx;,dy;) = (dx?,dx;,dy?,dy;) denotes the deformation feature
with (dx;,dy;) the displacement of F; relative to its anchor position on the root filter. As-
sume the model has M components and denote the parameters of these components by
B = (B1,...,Bm).- The matching score of the object example X for the model is defined
by

H(B,X) = 1221’3‘43(}?22@)5([3“P"(X))’ 2
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where Z.(X) is a set of possible matching configurations of the component M, on the object
example X.

Denote by D = {(X;,/;)|1 <i < N} a set of training examples, where X; is the image
region of the i-th example and /; € {1, —1} indicates whether the example X; belongs to the
specific object category. The model parameters B are learned by minimizing the following
objective function

N
L(B,D) = %HB||2+CZmax(O,1—liH(B,Xi)). 3)

i=1
As sub-category labels and part annotations of training examples are not available, the model
cannot be trained directly. Instead, training is done by first initializing the model parameters
and then updating these parameters using the sub-category labels and part locations obtained
by the initial model. In the initialization step, positive examples are first clustered into several
sub-categories according to the aspect ratios of these examples. For each sub-category, a root
filter is obtained by training a linear SVM classifier on positive examples belonging to the
sub-category and negative examples randomly sampled from training images. Then, part
filters are derived from the root filter. We will discuss how to initialize part filters in next
section and refer readers to [13] for more details on model training.

3.2 Part Filter Initialization

The objective function in Eq. (3) is non-convex and, as reported in [13], the training process
of DPM is susceptible to local minima, so it is necessary to select a good initialization of
model parameters. We focus on the initialization of part filters which plays an important role
in training the model. In [13], part filters of a component are initialized from its root filter in
a greedy way: the root filter is enlarged to twice its original size by interpolation and several
regions of predefined rectangular shapes (e.g. 6 x 6 squares) that have highest energy are
cropped out from the enlarged root filter. The energy of a region is defined by the norm of
positive weights corresponding to the region. Once a region is cropped out as a part filter, the
weights corresponding to the region are set to zero and next highest-energy region is chosen
until a specified number of part filters are obtained. This part filter initialization method has
two limitations as illustrated in Fig. 2: first, the pre-defined rectangular shapes of part filters
may not be optimal for the specific object category; second, the obtained part filters may
not well fit the object structure. To obtain a better initialization of part filters, we propose a
data-driven approach to discover part filters which can be non-rectangular by exploiting the
structure of object examples.

Formulation. Let D, be the set of object examples belonging to the c-th sub-category
and K = |D,| be the number of object examples in D.. For each component M., we aim
to find N, part filters that have good matching regions on object examples in D, and are
consistent with these examples in terms of object structure. First, we double the size of the
root filter F by interpolation, as in [13], to capture finer details. The enlarged root filter,
denoted by F 6, is represented by a 2Hy x 2W, array of cells Cy for 1 < k < 2Hy x 2W,, where
each cell Cy, corresponds to a n-dimensional weight vector in F, 6. Then, from F},, we obtain a
configuration of N, connected part filters, A = {F;|1 <i < N,}, which satisfies the following
overlapping constraint:

Area(F;NF )

O(F,F )= T— =k

_ for it i 4
Area(FiUFj)<T oriZJ, @
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(@ (b)
Figure 2: Toy example of part filter initialization. (a) An object example consisting of two
parts. (b) A deformed object example whose two parts move away from each other. (c) The
enlarged root filter with two 3 x 3 highest-energy part filters obtained by the greedy method.
Bright cells indicate high-energy regions and dark cells indicate low-energy regions. (d) A
better part-filter configuration which agrees with the structure of the two object examples.

()

where 7 is an overlapping threshold. This constraint prevents any two part filters from over-
lapping largely. We measure the fitness of the part filter configuration A to object examples
in D, by

F(A) = Sp(A)* % Sc(A), )

where Sg(A) is the average matching response of A over object examples in D, Sc(A)
reflects the structural consistency of A with these examples, and A is a parameter used to
balance Sg(A) and Sc(A). Our goal is to find a feasible part-filter configuration A that
maximizes F(A).

Now we describe how to evaluate Sg(A). We first compute the matching response of
each part filter F; on a single object example Xj+, Rp(F i,Xj*). The root filter F is applied
to obtain its optimal matching region R; on Xf and the region R; is enlarged to twice its
original size. We extract HOG features, denoted by f j» from the enlarged region R;. Due
to structural deformation and variation, R’j may not be able to cover the whole region of the
object example. In practice, we extend R} outward by a band of 2 cells width, so the final
size of f; is (2Ho +4) x (2Wp +4). The matching response Ry (F ,~,Xj+) can be computed by

Rp(Fi,X[") = F;- f(ai+Ai, Fy), (6)

where a; is the anchor position of F; (i.e. the top-left coordinate of F; in F), A, is the
displacement of F; to its optimal matching region in f; and f;(a; + A;,F;) denotes the
HOG features extracted from the matching region and has the same shape as F;. We search
for the optimal matching region of F; in a neighborhood centered at @; in f ; and do not take
deformation penalty into account. With Rg (F ,-,X]-*), we define

sN =2 ¥ ¥ Re(Fi X)) )

XI?'GDCF,'EA

Therefore, if part filters in A have good matching regions on object examples in D, the
average response Sg(A) should be high.

To evaluate Sc(A), we consider the deformations between cells in F(, on object examples
in D.. Let 8,{ be the displacement of the cell C, to its optimal matching region on X]+ The
optimal matching region is obtained in a neighborhood centered at (x; +2,y; +2) in f s

where (x,yx) is the coordinate of Cy in F(,. To make the estimation of Si more robust, we
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search for the optimal matching region of the 3 x 3 block centered at C and take the corre-
sponding displacement as Si. The deformation between cells C; and C; on XJ+ is measured

by di, =|| 8] — &/ ||. Letting dy; = # be the average deformation between Cy and C;
over all object examples in D., we define the cohesiveness between cells C; and C; by

d? . ] )
T(Cy,C)) = exp(—gkzl) if Cy, 1s.adjacent to Cy; ®
0 otherwise,

where o is a parameter and only the cohesiveness between adjacent cells is considered. The
total cohesiveness between cells within F; and the total cohesiveness between cells in F; and
cells in F; = F{,\ F; are given by

Tw(Fi,Fi)= Y T(C.C), 9
Cy,C/eF;
and B
Ts(Fi,Fi)= Y T(G.C), (10)
CkEFi,CIEF—i

respectively. A cohesive part filter should have strong cohesiveness between its cells (i.e.

large Ty (F;,F;)) and relatively week cohesiveness between its cells and the surrounding

cells (i.e. small Tz(F i F i)). Thus, we define the structural consistency of a part filter F; by
Ty (Fi, Fi)

U(Fi):TW(FiaFi)_‘_TB(Fi?FI'). "

With Eq. (11), the structural consistency of the part filter configuration A is computed by

Sc(A) =Y, U(Fy). (12)

FieA

Optimization. Since there are (2Hy x 2Wy)™e possible part filter configurations, it is
computationally expensive to obtain the optimal part-filter configuration A* by exhaustive
search. Thus, we solve the optimization problem by first choosing an initial part-filter con-
figuration A¢ which has a high structural consistency Sc(Ao) and then refining Ay to find a
local optimum for the objective function in Eq. (5). We obtain Ag by partitioning the enlarged
root filter F{, into N, part filters such that their total structural consistency is maximized:

N,
_ _ < Tw(F;,F;)
Ag = argm[asxSC(A) = argm/a\lxigi T (FiFi) + To(FiFy) (13)
Ty (Fi,F;) _ T(F;.F;) : :
As TW(Fi-¥i)+TB(Fi7Fi) =1- TW(Fi;'i)JrTB(Fi-,Ff)’ Eq. (13) is equivalent to
N _
. s TB(Fi7Fi)
Ap = argmin —. 14
0 &N ,'ZleW(FhFi)"FTB(FhFi) (1

The objective function in Eq. (14) has the same form as the K-way normalized cuts criterion
and an approximate solution can be obtained by the multiclass spectral clustering method
[36].
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(b

Figure 3: Our part discovery method. (a) The root filter of the right facing sub-category of
bicycle. (b) The average response map of cells. (c) The initial part-filter configuration Ay.
The black grids denote the cells which are removed from the enlarged root filter. (d) The
final part-filter configuration after refinement. For clarity, T = 0 is used in this example to
obtain the part-filter configuration without overlap.

Table 1: Average precision (AP) for 10 object categories in the PASCAL VOC2007 dataset
with different 1.

aero bike cat horse sheep sofa bus dog bottle cow
A=0.6]339 59.7 205 588 245 385 529 125 274 273
A=0.7]33.1 60.1 223 59.6 226 384 51.0 123 274 249
A=0.8|340 60.2 23.6 59.0 242 37.1 533 12.8 274 268
A=09]|345 589 228 57.0 221 387 53.6 126 27.1 263
A=1.0|349 59.7 225 579 232 389 519 12.6 26.8 252

Generally, object examples are not exactly rectangular and some cells in the enlarged root
filter F{, may correspond to the background. These background cells possibly cause small
isolated part filters corresponding to the background to be included in the initial part filter
configuration Ag. In our method, before partitioning Fy,, we remove 10% of the cells near
the boundary of Fy{, with low average responses over object examples in D,. The average
response of a cell Cy is computed by

K gl ¢
RC(Ck):ZjZIFO((Ij(k) fj(Ck)7 (15)

where F{y(Cy) is the weight vector of Gy and f ;(Cy) is the corresponding HOG feature. In the
refinement step, we iteratively update the current part-filter configuration. Possible update
operations include transferring one cell from a part filter to another, removing one cell from
a part filter and adding one cell to a part filter. We only choose update operations that satisfy
the connectivity constraint on every part filter and the overlapping constraint on the part
filter configuration. If the new part filter configuration obtained by an update operation has
a higher fitness value defined by Eq. (5), we replace the current part-filter configuration with
the new one. The refinement process continues until there is no update operation that can
lead to a better part-filter configuration. Figure 3 illustrates the process of our part discovery
method.

4 Experiments
We test our approach on two benchmark datasets, PASCAL VOC2007 [9] and VOC2010

[10] datasets, which are commonly used by most recent work on generic object detection.
Following the protocol of comp3 [9], we use the train and validation subsets for training


Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M  {}Gool, Williams, Winn, and Zisserman} 2007

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M  {}Gool, Williams, Winn, and Zisserman} 2010

Citation
Citation
{Everingham, Vanprotect unhbox voidb@x penalty @M  {}Gool, Williams, Winn, and Zisserman} 2007


8 ZHOU AND YUAN: NON-RECTANGULAR PART DISCOVERY

Table 2: Performance comparison using Average Precision (AP) on 20 object categories in
the PASCAL VOC2007 dataset.
aero bike bird boat bottle bus car cat chair cow table
DPM-V5 | 324 57.7 10.7 157 253 51.3 542 179 21.0 240 257
And-Or | 353 60.2 11.0 16.6 29.5 53.0 57.1 23.0 229 27.7 28.6
Ours |34.0 60.2 12.2 183 274 533 559 23.6 226 26.8 30.8
dog horse motor person plant sheep sofa train tv  mean
DPM-V5 | 11.6 556 475 435 145 226 342 442 413 325
And-Or [13.1 589 499 414 16.0 224 37.2 485 424 34.7
Ours 12.8 59.0 495 426 154 242 37.1 448 434 34.7

Table 3: Performance comparison using Average Precision (AP) on 20 object categories in
the PASCAL VOC2010 dataset.
aero bike bird boat bottle bus car cat chair cow table
DPM-V5 (429 472 103 11.1 263 484 402 229 17.0 229 10.2
And-Or |44.6 485 10.8 129 263 475 416 21.6 17.3 23.6 115
Ours [459 50.7 104 112 28.7 50.5 442 242 174 24.0 13.7
dog horse motor person plant sheep sofa train tv  mean
DPM-V5|199 415 440 410 7.6 283 18.2 39.0 329 28.6
And-Or 229 409 453 379 9.6 304 253 390 312 294
Ours 176 402 457 388 83 293 202 41.0 356 30.0

and the test subset for testing. Average precision (AP) is used as evaluation measure for
each object category and mean AP is computed over all object categories. We compare our
approach with two most related approaches, DPM-V5 [17] and And-Or [31], which adopt
the greedy search approach and the And-Or tree model respectively to initialize part filters
for DPM.

Implementation details. In our experiments, A = 0.8 and ¢ = 0.5 are used for all object
categories. For the overlap threshold 7, we do not set it to a fixed value. Instead, we restrict
each part filter to shrink or expand within a 2-cell width band along the part filter boundary
in the refinement step. We find this dynamic setting of T works well in practice. To make a
fair comparison, we use the same setting as DPM-V5 for part initialization: the number of
part filters for each component is set to 8 and the deformation parameters of each part filter
are set to [0.1,0,0.1,0]. After model parameters are initialized, the full model is trained in
the same way as in DPM-VS5. Although the shapes of parts in our model are not rectangular,
for simplicity we still represent each part by a rectangular filter with a corresponding mask
to disable the unused cells. As our model has roughly the same number of cells in all part
filters as the model obtained by DPM-VS5, the computational complexity of our method is
similar to that of DPM-V5.

Selection of parameter 1. We test our part discovery approach on 10 object categories
selected from PASCAL VOC2007 with A ranging from 0.6 to 1.0. The results are listed in
Table 1. It can be seen that a bad choice of A may lead to a significant performance decrease
for some object categories. Take the cat category for example. The performance of A = 0.6
decreases by 13% compared to that of A = 0.8. As shown in Table 1, A = 0.8 works well
for most of the object categories. We thus use this setting of A to test our approach on the
PASCAL VOC2007 and VOC2010 datasets. Cross-validation can also be used to select an
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appropriate A for each object category.

Experimental results. Detection results of DPM-V5, And-Or and our approach on the
PASCAL VOC2007 and VOC2010 datasets are given in Tables 2 and 3 respectively. All the
results are obtained without any post-processing, like bounding-box prediction or context
rescoring. Our approach outperforms DPM-VS5 for 19 and 17 out of 20 classes in PASCAL
VOC2007 and VOC2010 respectively, which demonstrates the advantage of the use of non-
rectangular part filters. Our approach achieves significant performance improvements for a
few object categories, like bicycle, dining table and tv monitor, which have relatively stable
structures. Overall, our approach is comparable to And-Or and performs slightly better than
And-Or on PASCAL VOC2010. Besides the use of non-rectangular part filters, another
difference between our approach and And-Or is that our approach uses 8 part filters for all
object categories, while And-Or can automatically determines the number of part filters for
each object category. We will study part number selection for DPM in future work to check
if it can further improve the performance. Figure 4 shows some detection examples of our
approach for the 20 object categories in PASCAL VOC2007.

5 Conclusions

We present a data-driven approach to discover parts for DPM. Different from most DPM
based methods which use a specified number of rectangular parts, our approach is capable
of discovering non-rectangular parts which can better fit object structures. Our approach can
be efficiently implemented by solving a K-way normalized cuts problem followed by local
refinement. The effectiveness of the proposed approach is validated on PASCAL VOC2007
and VOC2010 datasets. In future work, we will explore how to automatically select the part
number for each object category.
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