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Abstract

£'-Graph has been proven to be effective in data clustering, which partitions the data
space by using the sparse representation of the data as the similarity measure. How-
ever, the sparse representation is performed for each datum independently without taking
into account the geometric structure of the data. Motivated by ¢!-Graph and manifold
leaning, we propose Regularized ¢!-Graph (R¢'-Graph) for data clustering. Compared
to ¢'-Graph, the sparse representations of R¢!-Graph are regularized by the geometric
information of the data. In accordance with the manifold assumption, the sparse rep-
resentations vary smoothly along the geodesics of the data manifold through the graph
Laplacian constructed by the sparse codes. Experimental results on various data sets
demonstrate the superiority of our algorithm compared to £'-Graph and other competing
clustering methods.

1 Introduction

Clustering is a common and important unsupervised data analysis method which partitions
data into a set of self-similar clusters, and the clustering results always serve as indispensable
input to other algorithms in machine learning and computer vision, or the clusters themselves
reveal important patterns of the data.

Most clustering algorithms fall into two categories: similarity-based and model-based
clustering methods. Model-based clustering methods usually statistically model the data by
a mixture of parametric distributions, and the parameters of the distributions are estimated
via fitting the statistical model to the data [9]. The representative model-based clustering is
Gaussian Mixture Model (GMM), which assumes that the data are generated from a mixture
of Gaussians and the parameters of the Gaussian distributions are estimated by Maximum
Likelihood through the Expectation-Maximization algorithm [4, 9]. GMM-based clustering
achieves satisfactory results and it has been broadly applied to machine learning, pattern
recognition and computer vision [11, 16, 18, 22].
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Although model-based clustering methods possess clear statistical interpretations, it is
difficult to estimate parameters of the distributions for high dimensional data, which is the
case in many real applications. In addition, the real data may not be generated from the as-
sumed statistical models. In contrast, similarity-based clustering methods partition the data
based on the similarity function and alleviate the difficult parameter estimation in case of
high dimensionality. K-means [8] finds a local minima of sum of within-cluster dissimilar-
ities, and spectral clustering [14] identifies clusters of complex shapes lying on some low
dimensional manifolds. ¢!-graph [6, 17], which builds the graph by reconstructing each da-
tum with all the other data, has been shown to be robust to noise and capable of producing
superior results for high dimensional data, compared to K-means and spectral clustering.
Compared to k-nearest-neighbor graph and &-ball graph, ¢'-graph adaptively determines the
neighborhood of each datum by solving sparse representation problem locally. We introduce
sparse coding and ¢! -graph in the next subsection.

1.1 Sparse Coding and ¢!-Graph for Clustering

The aim of sparse coding is to represent an input vector by only a few sparse coefficients,
called the sparse code, over a dictionary which is usually over-complete. It has been widely
applied in machine learning and signal processing, and extensive literature has demonstrated
the convincing performance of sparse code as a discriminative and robust feature repre-
sentation [19]. Denote the data by X = [xj,X2,...,X,], where x; lies in the d-dimensional
Euclidean space IR, and let the dictionary matrix be D = [d;,d,, ... dy) € RR?*P with each
d,,(m=1,...,p) being the atom or the basis vector of the dictionary. Sparse coding method
searches for the linear sparse representation with respect to the dictionary D for each datum
x;. Sparse coding is performed by the following convex optimization

a’ =argming |||} st x;=Dal i=1,....n (1)

In [6], the authors applied the idea of sparse coding to data clustering and subspace learning
applications, and constitute the /;-graph. Given the data X = [xq,...,X,] € R¥*", ¢'-graph
seeks for the robust sparse representation for the entire data by solving the ¢;-norm opti-
mization problem for each data point:

min |||} st.x;=Xa' i=1,....n ()
at

where &' € R"*!, and we denote by @ the coefficient matrix & = [@!, ..., @"] € R™" with
the element @;; = a{. To avoid trivial solution that & = I, (n x n identity matrix), it is
required that the diagonal elements of & be zero, i.e. &;; =0 for 1 <i < n. £|-graph features
robustness to data noise and an adaptive neighborhood, specified by the non-zero entries in
the sparse codes, for each datum. Let G = (X, W) be the ¢!-graph where X is the set of
vertices, W is the graph weight matrix and W;; indicates the similarity between x; and x;.
¢'-graph sets the n x n matrix W as

W=(la|+|a’[)/2 3)

where | ¢| is the matrix whose elements are the absolute values of ¢, and then feed W as the
pairwise similarity matrix into the spectral clustering algorithm to get the clustering result.
It achieves better performance than spectral clustering with pairwise similarity matrix set by
Gaussian kernel which is widely used in a variety of machine learning tasks. It should be
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emphasized that the pairwise similarity matrix (3) constructed by the coefficient matrix &
leads to the superior performance of ¢!-graph based clustering.

However, ¢!-graph performs sparse representation for each datum separately and it sac-
rifices the potential of the geometric structure of the data especially in case of high dimen-
sionality. In the next section, we introduce Regularized ¢!-Graph, which incorporates the
information of the manifold structure of the data into the construction of the sparse graph.

2 Regularized ¢!-Graph

High-dimensional data always lie on or close to a submanifold of low intrinsic dimension,
and clustering the data according to its underlying manifold structure is important and chal-
lenging in computer vision and machine learning. While ¢!-graph demonstrates better per-
formance than many traditional similarity-based clustering methods, it performs sparse rep-
resentation for each datum independently without considering the geometric information
and manifold structure of the entire data. In order to obtain the sparse representations that
account for the geometric information and manifold structure of the data, we employ the
manifold assumption [2] and propose a novel Regularized ¢!-Graph (R¢!-Graph). The man-
ifold assumption in this case requires that if two points x; and X; are close in the intrinsic
geometry of the submanifold, their corresponding sparse codes @' and @/ are also expected
to be similar to each other. In other words, & varies smoothly along the geodesics in the
intrinsic geometry (See Figure 1). Based on the spectral graph theory [7], extensive litera-
ture uses graph Laplacian to impose local smoothness of the embedding to preserve the local
manifold structure [2, 10, 12, 13, 20]. Given a proper pairwise similarity matrix W, the
sparse code & that captures the local geometric structure of the data in accordance with the
manifold assumption should minimize the following regularization term:

n n

5L Y Wil /|5 =Tr(aLwa’) )
i=1 j=1
where Ly is defined as
1 _

Lw = 5(Dw +Dw) - W Q)

~ n
wherein Dw and Dw are diagonal matrices with diagonal elements (Dw);; = Y. W;; and

j=1

~ n

(Dw)ii = Y. Wj;. Lw is the graph Laplacian using the symmetric pairwise similarity matrix

=1

W, and (SI) also allows for nonsymmetric W. Let A be a KNN adjacency matrix, and A;; = 1
if and only if either x; is among the K-nearest neighbors of x;. The KNN adjacency matrix
A encourages local smoothness of the sparse codes in a neighborhood of each data point
without considering data that are far away from each other. Motivated by the local smooth-
ness of the embedding and the effectiveness of the pairwise similarity matrix constructed
by the sparse codes (3) in clustering, we propose to use W = (Ao |a|+AT o|a’|)/2 in the
regularization term (4), and o indicates the entrywise product.

It should be emphasized that our regularization term uses the graph Laplacian constructed
by the sparse codes, which exhibits superior clustering performance compared to the Lapla-
cian regularization used by previous works [10, 12] including Laplacian regularized sparse
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coding [10]. In Laplacian regularization, the pairwise similarity matrix W is set by the
Gaussian kernel. In contrast, the pairwise similarity matrix constructed by the sparse codes
enables R¢'-Graph to learn the sparse codes that are optimal in both sparsely representing
the data and modeling the pairwise similarity between the data. The resultant sparse codes
leads to better clustering performance evidenced by our experimental results. By incorporat-

J
o,

Figure 1: Illustration of the manifold assumption used in our R¢!-Graph. This figure shows
an example of a two-dimensional submanifold M in the three-dimensional ambient space.
Two neighboring points x; and x; in the submanifold are supposed to have similar sparse
codes, i.e. &' = [a},....a}]" and &/ = [et],..., &}]7, according to the manifold assump-
tion.

ing the Laplacian regularizer (4) into the ¢'-graph scheme, we obtain the following objective
function for R¢!'-Graph:

in Y —Xal3+ 1) aLwa’ 6
min Z;HX: [2+Alle']]; + YTr(aLwe’) (6)
st. W= (Aola|+ATo|a’|)/2 acs

where S = {a& € R"™"|at;; = 0,1 <i<n}, A >0 is the weight controlling the sparsity of the
coefficients, and y > 0 is the weight of the regularization term.

We further reformulate the optimization problem (6) into the following optimization
problem with simplified equality constraint:

min % - Xo'[3+ Al + YTr(@Lyow @) @)
’ i=1

st W=a acS
n n . .
Note that Tr(@Lwe”) = 1 ¥ ¥ A;j|W;l|le — a/|)3. Proposition 1 establishes the
= A

i=1j=
equivalence between the problem (7) and problem (6).

Proposition 1. The solution a* to the problem (7) is also the solution to the problem (6),
and vice versa.
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The proof is shown in the supplementary document. The equality constraint of the new
formulation (7) removes the | - | operator and the transpose of the coefficient matrix @. (7)
leads to a more tractable augmented Lagrangian function than its preliminary form (6), which
facilitates the optimization algorithm shown in the next section.

3 Optimization Algorithm

We employ Alternating Direction Method of Multipliers (ADMM) [3, 5] to solve the noncon-
vex optimization problem (7). ADMM decomposes the original problem (7) into a sequence
of tractable subproblems which can be solved efficiently. ADMM iteratively minimizes the
augmented Lagrangian with respect to each primal variable, and the augmented Lagrangian
function for the constrained optimization (7) is

n . .
L(e,W.Y) =Y [Ixi —Xa'|3+A] ]| +YTr(@Laow @) + (Y, W —a) + g IW—alz @®)
i=1
where (A,B) = Tr(ATB) is the Frobenius inner product, Y is the dual variable or the La-
grangian multiplier, and 3 is a pre-set small positive constant called penalty parameter.
By ADMM, the optimization of (7) consists of the following iterative optimizations:

a® = argmin £(or, WK1 Y1)y )
o

W® = argmin £(a® W, Y*1) (10)
w

Y® = yk=l) 1 g(wk) — k) a1

where the superscript k > 1 is the current iteration index. From (11) we can see that the
penalty parameter f3 is also the step size for updating the Lagrangian multiplier Y. We ex-
plain the subproblems (9) and (10) in detail in the sequel, and we also remove the superscript
k for simplicity of the presentation without confusion.

e Subproblem (9): update & while fixing W and Y

=

n
min Y’ [xi — X a'|3+A[ @[], + YTr(@Lagwie’) - (K, @)+ (@.0)  (12)
i=1

where K =Y 4+ BW. We denote by F (@) the objective function (12), and use coordi-
nate descent algorithm to solve problem (12). In each step of the coordinate descent,
we optimize F (@) with [a!,..., a1 &' ... &"] fixed:

1 , 4 :
min F(a') = fa’TPia’—FbiTal"‘)L”al”l (13)
aicR” 2
s.t. Oj; = 0

where P; = 2X7X + (y( L Aij|Wij| +Ai|Wji|) + B)IL, which is a positive definite
J#i

matrix, b; = —2X7x; — y ¥ (A;;|Wij| +Aji|Wi|)&t; — K, K' is the i-th column of K.
J#

Problem (13) is a Lasso problem and it is also solved efficiently by ADMM, where the
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resultant subproblems have closed-form solutions. We leave the details in the supple-
mentary document of this paper. The optimal solution to (12) is obtained by iteratively
solving (13) for i = 1...n until convergence. We adopt a warm start technique that ef-
fectively reduces the iteration number of coordinate descent. Warm start initializes
a® in the current iteration by the solution @* 1) obtained in the previous iteration.
In our experiments we observe that the iteration number of coordinate descent is less
than 5 in most cases.

Algorithm 1 Data Clustering by Regularized ¢'-Graph (R¢!-Graph)

Input:

13:

: Build the pairwise similarity matrix by symmetrizing &¢*: W* =

The data set X = {x; |, the number of clusters ¢, the parameters A, the regulariza-
tion parameter Y, the ADMM penalty parameters 3 and y, the threshold €;, & and the
maximum iteration number M.
k = 0, initialize the coefficient matrix, the matrix W and the Lagrangian multiplier as 0,
ie. al® =wO0 =y =0,
Begin the ADMM iterations:
while £k < M do
Solve subproblems (9), (10) and (11) according to the details explained in Section 3
to obtain a@*+1), Wk+1) and yk+1),
if k> 1and (|a® —a®V|z < ¢ and [WK —a® || < &) then
print
else
k=k+1.
end if
end while

: Obtain the optimal coefficient matrix &* when the ADMM algorithm converges or max-

imum iteration number is achieved.
la*|+|a*|"
5=, compute the

corresponding normalized graph Laplacian L* = (D*)’% (D* — W*)(D*)’%, where D*
n
is a diagonal matrix with Dj; = }, W},
=1
Construct the matrix v = [vy,...,V.] € R"™¢, where {vi,...,v.} are the ¢ eigenvectors

of L* corresponding to its ¢ smallest eigenvalues. Treat each row of v as a data point in
R¢, and run K-means clustering method to obtain the cluster labels for all the rows of v.

Qutput: The cluster label of x; is set as the cluster label of the i-th row of v, 1 <i <n.

e Subproblem (10): update W while fixing & and Y

=

minYTr(@Lyow @) + (Y, W) = B(W, @) + 5 (W, W)
which is equivalent to
e o;—Y;;
min 3 §<WU~ - W>2+VQ$W1'J| (14)
ij=
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(14) can be solved for each W;; separately by soft thresholding as below:
sign(ﬁ al-j — Yij)
B

where Q% is an x n matrix with elements Qf} = 1A;j|la—a/
sign(-) is defined as

Wi = max{0,[|Ba;; — Y| — vQi}} - 1<ijj<n (15

%, and the sign function

1 : x>0
sign(x) = 0 : x=0 (16)
-1 : x<0

Given the initialization a(®) = W(©) = y(©) — 0, the ADMM algorithm solves three sub-
problems (9), (10) and (11) iteratively until convergence or the maximum iteration number
is achieved. With the obtained optimal coefficient matrix a*, we build a pairwise similarity
matrix W* = %‘ar‘ and then use spectral clustering method to obtain the clustering result,
as suggested in ¢!-Graph [6]. Algorithm 1 describes our data clustering algorithm using
R/!'-Graph in detail.

Suppose the maximum iteration number of ADMM is Nj, and the maximum iteration
number of the coordinate descent for solving subproblem (12) is N,, then the overall time
complexity for solving the optimization Problem (7) by ADMM is O(N;n*37® + N{Non?).
We leave the details in the supplementary document. It is known that ADMM converges
and achieves globally optimal solution for a class of convex problems [5]. Although our
optimization problem (7) is nonconvex, we observe that ADMM for (7) always converges in
less than 15 iterations for all the experiments we conduct.

4 Experimental Results

We demonstrate the performance of R¢!-Graph with comparison to other competing methods
in the section.

4.1 Data Set

We conduct clustering experiments on various real data sets, which are summarized in Ta-
ble 1. Three data sets are image data sets, i.e the ORL face database, the Yale face database
and the MNIST handwritten digits data set. The ORL face database contains facial images
for 40 subjects, and each subject has 10 images. The images are taken at different times
with varying lighting and facial expressions. The subjects are all in an upright, frontal posi-
tion with a dark homogeneous background. The Yale face database contains 165 grayscale
images of 15 individuals. The MNIST database of handwritten digits has a total number of
70000 samples ranging from O to 9. The digits are normalized and centered in a fixed-size
image. We also choose four data sets from UCI machine learning repository [1], i.e. Heart,
Breast Tissue (BT) and Breast Cancer (Breast).

4.2 Evaluation Metric

We use two measures to evaluate the performance of the clustering methods, i.e. the accu-
racy and the Normalized Mutual Information(NMI) [21]. Suppose the predicted label of the
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Table 1: Real data sets used in experiments
ORL | Yale | MNIST | Heart | BT | Breast
# of instances | 400 168 70000 270 106 569
Dimension 1024 | 1024 784 13 9 30
# of classes 40 15 10 2 6 2

datum x; is ¥; which is produced by the clustering method, and y; is its ground truth label.
The accuracy is defined as
L5\,
Accuracy = b)) 2] (17)
n
where 1 is the indicator function, the mapping function ® is the best permutation mapping
function obtained by the Kuhn-Munkres algorithm [15]. Based on (17), we can see that the
more predicted labels match the ground truth ones, the more accuracy value is obtained.
On the other hand, suppose the clusters obtained from the predicted labels {§;}} ; and

the ground truth labels {y;}! | are C and C respectively. The mutual information between C
and C is

MI(C,C)= Y p(éc)log, (pp(”)) (18)

where p (¢) and p(c) are the probabilities that a data point belongs to the clusters ¢ and ¢
respectively, and p(¢,c) is the probability that a data point jointly belongs to clusters ¢ and
c. The normalized mutual information(NMI) is defined as follows:

MI(C,0)

NMI(C.C) = max{H (C),H(C)}

19)

where H(C) and H(C) is the entropy of € and C. Tt can be verified that the normalized mutual
information takes values in [0, 1]. The accuracy and the normalized mutual information has
been widely used for evaluate the performance of the clustering methods [6, 20, 21].

4.3 Clustering Result

We compare our algorithm to K-means (KM), Spectral Clustering (SC) and ¢'-Graph. More-
over, in order to demonstrate the superiority of our proposed regularization term (4) using
the pairwise similarity matrix constructed by the sparse code instead of the Gaussian kernel,
we derive Laplacian regularized ¢!-Graph (L¢'-Graph). L¢!-Graph is equivalent to the sub-
problem (12) of R¢'-Graph except that W is set by the Gaussian kernel. For MNIST data set,
we randomly select 6 digits out of the 10 digits, and then randomly choose 100 samples for
each chosen digit, resulting in a subset comprsing 600 samples. We perform this process for
20 times and report the average clustering performance on the 20 runs. The clustering results
on various data sets are shown in Table 2. By the manifold assumption that imposes local
smoothness of the sparse codes in the data submanifold, R¢!-Graph obtains better perfor-
mance than ¢!-Graph and SMCE. Moreover, the regularization term using the sparse codes
achieves better performance than that using Gaussian kernel.
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Table 2: Clustering Results on Real Data Sets

Data Set | Measure KM SC ¢"-Graph | L¢T-Graph | R¢T-Graph
ORL AC 0.5333 | 0.4385 0.6964 0.6925 0.7489
NMI 0.7317 | 0.6604 | 0.8410 0.8367 0.8731
Yale AC 0.3974 | 0.2093 0.5339 0.5307 0.5673
NMI 0.4525 | 0.2067 | 0.5731 0.5731 0.5906
MNIST AC 0.6276 | 0.4422 0.6419 0.6425 0.6617
NMI 0.5243 | 0.3358 | 0.6207 0.6156 0.6288
Heart AC 0.5889 | 0.5519 0.6370 0.6333 0.6407
NMI 0.0182 | 0.0032 | 0.0534 0.0507 0.0573
BT AC 0.3396 | 0.4057 0.4434 0.4123 0.5094
NMI 0.3265 | 0.3563 | 0.2762 0.2658 0.3608
Breast AC 0.8541 | 0.6292 | 0.9016 0.9051 0.9051
NMI 0.4223 | 0.0026 | 0.5172 0.5249 0.5249

4.4 Parameter Setting

We set A = 0.1, y= 0.5, and choose K € {5, 15} empirically throughout all the experiments
in this paper. There are two parameters that influence the regularization term in R¢!-Graph,
namely the weight of the regularization ¥ and the number of nearest neighbors K of the
KNN adjacency matrix. The regularization term imposes stronger smoothness constraint on
the sparse codes with larger ¥ and K, and vice versa. We investigate how the clustering per-
formance on ORL face database changes when varying these two parameters, and illustrate
the result in Figure 2 and Figure 3 respectively. We observe that the performance of R¢!-
Graph is much better than other algorithms over a large range of both y and K, revealing the
robustness of our algorithm.
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Figure 2: Clustering performance with different values of K, i.e. the number of nearest
neighbors, on ORL face database when y = 0.5. Left: Accuracy; Right: NMI

5 Conclusion

We propose Regularized ¢'-Graph for data clustering in this paper. Complying to the mani-
fold assumption, R¢'-Graph encourages the sparse representations of the data to vary smoothly
along the geodesics of the intrinsic data submanifold using the graph Laplacian constructed
by the sparse codes. R/'-Graph achieves better performance than Laplacian Regularized ¢'-
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Figure 3: Clustering performance with different values of 7, i.e. the weight of the regular-
ization term, on ORL face database when K = 5. Left: Accuracy; Right: NMI

Graph where the graph Laplacian is constructed by Gaussian kernel. Experimental results
on real data sets shows the effectiveness of our algorithm.
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