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Abstract

When parsing images with regular spatial layout, the location of a pixel (x,y) can
provide important prior for its semantic label. This paper proposes a novel way to lever-
age both location and appearance information for pixel labeling. The proposed method
utilizes the spatial layout of the image by building local pixel classifiers that are location
constrained, i.e., trained with pixels from a local neighborhood region only. Albeit sim-
ple, our proposed local learning works surprisingly well in different challenging image
parsing problems, such as pedestrian parsing and object segmentation, and outperforms
state-of-the-art results using global classifiers. To better understand the behavior of our
local classifier, we perform bias-variance analysis, and demonstrate that the proposed lo-
cal classifier essentially performs spatial smoothness over the global classifier that uses
appearance information and location, which explains why the local classifier is more
discriminative but can still handle mis-alignment. Meanwhile, our theoretical and ex-
perimental studies suggest the importance of selecting an appropriate neighborhood size
to perform location constrained learning, which can significantly influence the parsing
results.

1 Introduction

Spatial layout of an image conveys significant information for labeling its pixels. For exam-
ple, in street view images, the sky pixels are more likely to appear in the top of the image,
and road pixels are more likely to appear at the bottom. As illustrated in Figure 1, absolute
location is useful for a variety of image parsing problems, such as pedestrian parsing after
detection [5], street view scene parsing [23, 37], and medical image segmentation [12, 36].
This paper focuses on utilizing absolute location of a pixel to improve image parsing.

Many approaches have been proposed to fuse absolute position (x,y) and feature vector
f for image parsing [2, 3, 5, 32, 36, 37]. Some of them use early fusion, e.g., concatenating
feature and position to form (f, x,y), then train a global discriminative classifier. Others use
late fusion, e.g., they firstly model p(L | f) and p(L | x,y) separately where L stands for pixel
label, and combine them with weighted multiplication and normalization. Most of them
attempt to solve the pixel classification problem with a single global model. In other words,
they learn a single global pixel classifier for the entire image space, and all pixels of the
image are used to train the classifier.
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Figure 1: This figure shows the images and absolute location priors of certain semantic
labels. The location priors are obtained from the corresponding dataset. (Best viewed in
color)

In contrast, our method is based on local learning. Given location (x,y) and feature f,
instead of learning a universal pixel classifier, i.e., global classifier, for the entire image, at
each image location we learn a location constrained classifier, i.e. local classifier. Each local
classifier is trained only by pixel samples from the neighborhood region A (x,y,s) centered
at (x,y) and of scale s. Since each local pixel classifier is learned by only using the pixels in
a local neighborhood, it is expected to better fit the local pixel distribution and capture local
discriminative information. Compared with building a global classifier, such a local learning
task is usually easier, as it avoids dealing with confusing negative samples outside the local
region, which have similar feature to positive samples and easily confuse the global learning.
Meanwhile, as the number of classes that can be observed in a local neighborhood is usually
not many, learning the local classifier is less challenging too. To prevent local classifier
overly depending on the image location and to improve generalization, the neighborhood
scale s is important. On one hand, if s is too large, each local classifier behaves more like a
global one. On the other hand, if s is too small, local classifiers strongly depend on location
and will be sensitive to the image misalignment. To better understand the trade-off, we
perform bias-variance analysis on the local classifiers and establish the relationship between
local learning and global learning. Our theoretical and experimental results both validate
that a proper selection of neighborhood size s is critical to obtain good performance.

The main steps of our proposed algorithm are illustrated in Figure 2. At each location we
learn a location constrained local classifier with training samples only from surrounding pix-
els in a neighborhood. Then the learned classifier will be used to classify pixels of the same
region in a testing image. To ensure smoothed labeling results, we allow the local classifiers
to overlap with each other, such that each pixel will be voted by multiple local classifiers.
The final score is the average score of all engaged local classifiers. Therefore, after each
local classifier outputs a local labeling map, we merge all local maps to build the overall la-
beling map. The final result is obtained after a proper discretization of the labeling map with
a conditional random field (CRF). We verify the performance of our proposed algorithm on
two pedestrian parsing datasets [5, 25] and Weizmann horse dataset [6]. The experiments
demonstrate that the proposed algorithm achieves significant improvements compared with
state of the arts.

2 Related Work

Layout Modeling. Spatial layout can be classified into two perspectives, relative [32, 35]
and absolute [2, 3, 5, 21, 23]. While relative layout is more flexible, it does not account for
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Figure 2: At each location we train a position dependent local pixel classifier with training samples
from its neighborhood region represented by a patch. Assume the training and testing images have
similar layout, the trained classifier is used for the same region in the testing images. Each classifier
outputs a local labeling map, and these are merged through averaging to build the overall labeling map.
(Best viewed in color)

the dependency on global image coordinates in an explicit manner. Such information is bet-
ter modeled with absolute location. Because of the spatial misalignment, absolute location
can be unreliable. For some methods, the principle is to correct the spatial misalignment. In
[9, 23] the segmentation is done by label transfer with a matching processing to enhance the
localization. In [12] image registration is performed prior to the graph-cut based segmenta-
tion to correct any misalignment. While these methods are effective, residue misalignment
errors may still be present after the correction. As a result, an alternative approach is also
useful based on tolerating the spatial misalignment. In spatial pyramid matching for im-
age categorization [18], a multi-scale grid is used to model the absolute location at different
scale levels. It is further extended in [16] where location is encoded with a Gaussian mixture
model and variance of each Gaussian represents spatial uncertainty. In distribution field for
tracking [30], an image descriptor is built to smooth the absolute location without affecting
the intensity values. While [16, 18, 30] are not directly applicable to pixel labeling, the
principle is related to our work, which is to tolerant rather than to correct the misalignment.
Local Learning. In [13, 29] it is discovered that for object detection, training a separate
detector for each image location can significantly reduce the problem complexity. In [22]
a multi-task local boosting is proposed for the object recognition application. Cuingnet et
al. propose a two stage procedure for kidney segmentation [10]: kidney detection is firstly
performed, before subsequently training a classifier specifically for labeling the detected
region. Ren et al. propose to train local region regressors for the face alignment task [28].
While these applications demonstrate the effectiveness of the local learning, an important
issue which has not been thoroughly studied is the influences of neighborhood scale of local
learning. Our work specifically targets at this issue, and we have thoroughly discussed the
connection between the global and local learning in the context of pixel labeling.

3  Our Approach

3.1 Feature Extraction

Given an image, we firstly use SLIC superpixel algorithm [1] as a preprocessing step to over-
segment the image. All the subsequent operations are then performed on superpixel level
instead of pixel level to reduce computational cost. We notice that in most cases an image
of size 300 x 300 pixels can be represented with only 2000 superpixels without sacrificing
important details such as object boundaries. Thus the label of each superpixel can be just
set to the majority labels of its constitute pixels. However, in the rare event that a superpixel
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contains multiple objects of similar size, so the percentage of pixels with majority labeling is
less than 70%, we consider such a superpixel label unreliable and remove it from the training
set.

To represent each superpixel, multiple types of raw features are used such as RFS filter
banks [19], dense SIFT [24] and LBP [26]. For each type, we firstly construct the dictionary
via K-means, and then assign the raw feature of every pixel to its nearest cluster center.
With every pixel assigned a cluster center index, we have obtained the texton map of the
image and the cluster center index is called a texton index [38]. To represent the superpixel,
we extract a patch around the superpixel center and then compute the histogram of texton
indexes within the patch. After performing this calculation for all three types of raw features,
the final representation is given by the concatenation of the three histograms.

3.2 Training Local Classifier

We have a collection of training images Z € R"**, where VV and H stand for width and
height of the images respectively. Given a superpixel’s central position (x,y) and its asso-
ciated feature vector f, our goal is to predict the class label L of that superpixel. Instead
of simply concatenating f and (x,y) and training a global classifier p(L | f,x,y) with sam-
ples from the whole image Z, we are interested in learning a number of local classifiers
pa(L | f) at different spatial locations. N (x,y,s) or its abbreviation N stands for a local im-
age neighborhood, which is a patch centered at (x,y) and of width s x WV and height s x H,
where s is the neighborhood scale. In other words, the training set for each local classifier
is {(Li, 1) | V(xi,y:) € N(x,y,5)}. We use linear SVM [11] to train the local classifier while
other more advanced learning methods can be used as well. We discuss three issues relating
to the training.

Firstly, the neighborhood scale s is an important parameter for the performance of our
proposed local classifier. Its theoretical implication is explained detailedly in this section
and section 4. We use a validation set to select the neighborhood scale.

Secondly, as it is computationally intensive to train classifiers at all locations to score
the whole image, they are trained coarsely on a uniform grid. We set the grid spacing in
proportional to the neighborhood scale s; so for classifiers of larger s their locations are
sampled more coarsely. The reason is that classifiers with larger s have larger spatial support,
so nearby classifiers become more similar to each other (see the discussion after Theorem
1) and the performance gain by using dense training location will become lesser. In our
implementation the grid spacing is set to 0.2 x s x (W, H), where s ranges from O to 1.

Thirdly, for problems such as pedestrian parsing, there is a significant class imbalancing
issue. To better handle the minority labeling such as arms and legs, we do not subsample each
class in proportional to their occurring frequency. Instead, we subsample majority labeling
more aggressively and minority labeling less aggressively, in a similar manner proposed by
Tighe and Lazebnik [33]. We find such a scheme is critical for the performance.

Probabilistic modeling. We give an exact definition of our proposed classifier in terms
of conditional probability. By such an analysis we also suggest the important role of select-
ing a good neighborhood scale s. At each superpixel position (xg,yo), the following local
distribution par(L,f,x,y) models the superpixels within a local neighborhood N (xo, yo, 5):

p(L.f,x.y), . \v/ c N
pN(L,f,x,y) = ):(Xlw,v’)EN p(Y)? (x7y) s (H
0, V(x,y) ¢ N

1
WxH*

where p(x',y) = Different from the global distribution p(L,f,x,y) where (x,y) €
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T, pa(L,f x,y) only models the superpixels within the local neighborhood thus is a local
distribution. Correspondingly, the local classifier approximates the following conditional
distribution:

Yieyez PN (L EX,Y)  Yixyjen (L1 x,Y)

pn(L|f) = =
( | ) Z(x,y)EIpN(faxvy) Z(x,y)e./\/p(faxvy)
Z(xy)eNp(L | f7x,y)p(f|x7y)
= o< p(L|f.x,y)p(f]x,y). 2
T pflny) o, P Exp(xy)

Equation 2 explains the relationship between our local classifier pas(L | f) and the global
classifier p(L | f,x,y) that uses both f and (x,y). The proposed local classifier par(L | f)
is a spatially smoothed version of the global classifier p(L | f, x,y) in a local neighborhood,
where the weight p(f | x,y) characterizes the dependency of the observed feature f at the
pixel location (x,y). In this sense, pas(f| x,y) actually serves as a smoothing kernel and
s determines the smoothing bandwidth. The neighborhood scale s plays an important role
in building the local classifier. On one hand, when the local neighborhood contains only a
single superpixel, i.e., s = 0, our local classifier degenerates into:

PN (xy0) (L | £) = p(L [ £,x,). 3)

On the other hand, when the local neighborhood expands to the entire image, i.e., s =1,
it becomes ps(xy,1) (L | f) = p(L | f), which indicates position information (x,y) is not uti-
lized at all. In Section 4, we will further discuss the implication of choosing an appropriate
neighborhood scale s for local classifiers from the perspective of bias-variance analysis.

3.3 Testing and CRF Inference

During the testing to score a superpixel at position (x,y), straightforwardly we can just
perform prediction using the trained classifier at a nearest neighboring location. That is:
Dnearest (L | £,x,3,8) = p Nisgps) (L | f), where (xi,yx) is the location of the nearest trained

classifier to (x,y). However this is less effective as a testing location is related to multiple
nearby classifiers. Instead we use an averaging merging procedure as shown in Figure 2.

For the average merging, after training the local pixel classifier pys(L | f), it is used to
label all superpixels belonging to the same patch (x,y) € N. So at each position (x,y) a
superpixel will receive multiple votes from nearby local classifiers that cover that super-
pixel, i.e., if (x,y) € N the local classifier pas(L | f) will vote for (x,y). We collect all local
classifiers that can influence (x,y): Q = {k: (x,y) € Ny, y,.5)}> Where k is the classifier’s
index. After that all probabilistic scores of nearby classifiers are averaged for the final score:
Pmerged(L | £,x,y,5) = ‘lmzkeg PNy (L | f). Experiments confirm that such an average
merging procedure leads to an improved performance compared with scoring using a single
classifier.

For transformation of the classifier probabilistic output to discrete labeling results, we
use a simple CRF model with pairwise smoothing [23] and solve it using graph-cut with the
GCO libr.alryl [7, 8, 15]. Similar as before, our CRF is constructed on superpixel level; so
each node of the graph corresponds to a superpixel in the image.

mttp://www.csd.uwo.ca/~olga/0ldCode.html
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4 Bias-Variance Trade-off

Bias-variance analysis is commonly used to understand data fitting and model selection.
Using bias-variance analysis, we will further discuss the influence of neighborhood scale s
for local classifiers.

To perform bias-variance analysis of the local classifiers, we assume to have a large num-
ber of training sets of images, following the global joint distribution g(L,f,x,y). Each train-
ing set can build its own local classifier pus(x.5) (L | f), and its average is E(ppr(xy,5) (L | ),
where the expectation is taken over all the training sets. To evaluate the loss of a local classi-
fier obtained from a specific training set, we measure the KL-divergence between the target
g(L | f,x,y) and pr(x) (L | £). The target equals to gns(y,0) (L | f) according to Equation 3:

Loss(Par(xy,s) (L | ) = E(dKL(GA (ry0) (L 1 E) || PA(rys) (L 1))

target model

GN (xy0) (L | )
= EQ_aqn(xyo0 (L flog—""——=), 4
(LZJ‘ Nx0) PN (x,y,5) (L ‘ f))

where the expectation is taken over all the training sets. Following the bias-variance analysis
in [14], we can further decompose the loss into bias and variance terms:

loss(p./\f(x,y,s) (L ‘ f))
= drr(qn ey (L) || E(par (L1 9) +E(drr(E(pa (L |1)) [| pa(L[F))), (5)
—_—

target average average model
bias(p./\f(.x’,y.x) (LIf)) var(p.’\/‘(x,_\gx) (L)
Let:
Var(s) = Z Var(pN(x.y,s) (L | f))a (6)
(xy)€Z

where var(pr(xy.s) (L | f)) is defined by Equation 5. Based on the bias-variance analysis,
the following theorem shows that averaging over all the positions, the testing error variance
satisfies the following monotonically decreasing property.

Theorem 1. Assume s is much smaller than the image size and s| = k X s, for k being an
integer, and:

Z pi7N(f7~xl7yl) = Z pj,/\/(faxlay/)a @)
(' Y)EN (x.3,5) (o Y)EN (x.3,5)

Sfor any position (x,y) € T and training set indexes i and j, we have:
var(sy) < var(sz),
where var(s) is defined by Equation 6.

From Theorem 1, using a larger neighborhood scale s for local learning will result in a
larger overlap among the nearby local classifiers, such that nearby local classifiers behave
more similarly to each other. Such a smoothness makes the classification less sensitive to the
alignment variations, thus can better tolerate spatial misalignment.
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Figure 3: Bias-variance trade-off on Weizmann horses dataset.

For the bias term defined by Equation 5, by assuming that the ensemble is unbiased, the
following approximation holds: E(pas(xy.s) (L | £)) & qar(xys) (L | f). The bias term of our
model can then be approximated as: dxr(qn(xy,0)(L | f) || @nr(xy,s) (L | £)). From the above
approximation, we see that the bias will equal zero when neighborhood scale s = 0. As KL
divergence is non-negative, the bias terms will increase with a larger neighborhood scale.

To evaluate our result, we simulate the bias-variance trade-off with Weizmann horses
dataset, and the result is shown in Figure 3. We use the whole dataset for calculation of
the target, while randomly selecting 20% of all images for 10 times as training sets for
calculation of an ensemble of 10 models. Feature vector f of each pixel is simply its intensity
value, and we calculate the bias, variance and loss by Equation 4 and 5. The simulation
confirms that bias increases with the neighborhood scale and variance decreases. In addition,
we can also find an appropriate neighborhood scale to reduce the testing loss significantly.
From the simulation, we understand that an appropriate neighborhood scale to balance the
bias and variance is essential for minimizing the testing error. In the implementation, we use
a validation set to select the neighborhood scale.

S Experiments

5.1 Pedestrian Parsing

Our first set of experiments are performed on Penn-Fudan [5] and PPSS dataset [25]. The
datasets contain 7 semantic labels of body parts, such as hair, face, upper-clothes, etc. In
these two datasets, location prior becomes useful as parsing is performed within the detected
bounding box. The dataset splitting is identical to the previous works [5, 25], and we reserve
20% from the training set to be used as validation images. In this experiment, the accu-

racy metric for each semantic label is intersection over union (IOU) score defined between

ground-truth A and output B by % (5D.

Comparison with Alternative Approaches of Fusion f and (x,y). We firstly compare
the proposed approach with three commonly used methods of combining feature vector f and
location coordinate (x,y). (1) (f,x,y) + SVM (as used in [3]): we concatenate feature and
position information together to form (f,x,y), and put it into a SVM classifier. (2) (f,x,y)
+ Boosting (as used in [36, 37]): we put the concatenated feature vector (f,x,y) into a joint
boosting classifier [34]. (3) Product of Experts (as used in [23]): the merge is done by

pLlxy) p(Llf) 1~
Z

multiplying the two posterior probability map with weighting: , where k is
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Penn-Fudan PPSS Penn-Fudan
SBP[5] 57.3
Feature Only 45.1 31.8
P&S[27] 55.0
(£,x,y) + SVM 543 39.7
. DL[25] 59.9
(f,x,y) + Boosting 60.3 45.1 Ours 63.1
Product of Experts 52.6 45.1 .
Ours(nearest) 62.1 52.7 PPSS
Ours(merged) 63.1 53.5 DDN[23] 47.2
& : : Ours 53.5

Table 1: Benchmark results for Penn-Fudan and PPSS dataset. The performance metric is the average
intersection over union (IOU) score over all labels.

WEER
RYFATRAL

Figure 4: Image results from Penn-Fudan dataset. Visual quality is generally better than SBP[5].
(Best viewed in color)

SBP

Ours

between 0 and 1, and Z is a normalization constant. To ensure a fair comparison, all the
parameters have been throughly adjusted by validation.

Table 1 shows that our method’s performance is superior than the alternative ways of
feature fusion. It confirms the advantages of our local classifiers that they are better adapted
to the local image characteristics than a global classifier. Table 1 also demonstrates that the
average merging discussed in section 3.3 (denoted as “merged”) performs better than scoring
with a single classifier at the nearest neighbor location (denoted as “nearest”). Thus in all
the comparisons with state of the arts, average merging scheme is used.

State of the Arts Comparison. Table 1 shows that the performance is greatly improved
compared with state of the arts, although it has not been designed specially for the purpose of
pedestrian parsing. From Figure 4 and 5 we see that except for the occlusion cases, parsing

98ew

sinp

ﬂﬂﬂﬂﬂﬂﬂlﬂﬂﬂﬂ

Figure 5: Image results from PPSS dataset. In the last image, we fail to parse the legs correctly
because of the occlusion. (Best viewed in color)
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Penn-Fudan Hair Face ucC Arms LC Legs BG
SBP[5] 44.9 60.8 74.8 26.2 71.2 42.0 81.0
DL[25] 432 57.1 71.5 27.4 75.3 52.3 86.3

Ours 66.5 61.4 74.8 36.9 74.0 43.8 84.6
PPSS Hair Face ucC Arms LC Legs BG
DDN[25] 355 441 68.4 17.0 61.7 23.8 80.0
Ours 55.6 46.6 71.9 30.9 58.8 24.6 86.2

Table 2: Accuracy of each semantic label on Penn-Fudan and PPSS pedestrian parsing dataset. “UC”
stands for upper-clothes and “LC” for lower-clothes.

— Validation|
===Testing

Image  P(Horse|Location) P(Horse | Feature)

reo,
‘e
)
‘e
0
.
.

0.2 0.4 0.6 0.8
Neighbourhhod Scale

Figure 6: Tllustration of influences of neighborhood scale (denoted by “NS” in the right figure) on
Weizmann horse dataset. (Best viewed in color)

quality is quite good, even for some images’ contrast being quite poor as in PPSS dataset.
Table 2 shows that the parsing is reasonably good for upper-cloths, lower-clothes and back-
ground and worse for arms and legs. Arms and legs are subjected to more spatial variations
and are much smaller in size. These make the parsing more challenging. Compared with [5]
and [25], our method performs significantly better on hair and arms, with an improvement
of more than 0.1 in IOU score.

5.2 Horse Segmentation

Our second experiment is to evaluate the performance on Weizmann horses dataset [6]. Al-
though the horses are mostly located at the central portion of the image and facing left, they
contain a large amount of appearance and pose variations especially for legs. This makes the
dataset challenging if we want to correctly segment the details.

Neighborhood Scale. Figure 6 illustrates the influences of the neighborhood scale s as
a percentage of the image size. We observe that as the s increases, the map transforms from

F-value Method F-value Accuracy
Feature Only 83.9 [20] - 95.5
(f,x,y) + SVM 83.9 [4] - 94.6
(f,x,y) + Boosting 87.6 [17] - 94.7
Product of Experts 86.5 [35] 84.0 -
Ours(nearest) 90.1 [31] 89.9 95.4
Ours(merged) 90.1 Ours 90.1 95.7

Table 3: Benchmark results for Weizmann horse dataset.
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M

Figure 7: Image results from Weizmann horse. In the third and fourth row we show some examples
that position, size or pose of the horse not following position prior.

p(L|x,y)to p(L| f) gradually. When the s is very small such as 0.02, location information
is emphasized. However, because of the increased variance and limited training samples, the
map also becomes quite noisy. On the other hand, if the neighborhood scale is too large such
as 0.5, location information is “smoothed out” and consequently errors in the posterior map
cannot be corrected. As a result, selection of a good neighborhood scale is important for
good performance of our classifiers.

State of the Arts Comparison. Table 3 demonstrates that, on the Weizmann dataset our
method performs much better than three alternative ways of fusion f and (x,y). In addition,
our method has beaten the performance of five existing algorithms [4, 17, 20, 31, 35]. We
also find it performs reasonably well even for cases that position, size, or pose of the horses
does not follow position prior (see Figure 7). This demonstrates that our method is flexible
for varied situations, and effective in handling misalignment of the location prior.

6 Conclusion

This paper proposes a novel way of fusing location and feature information for pixel la-
beling by local learning. Each local classifier is trained with pixels from its neighborhood
region thus better fits the local distribution and is more discriminative. We analyze the bias-
variance trade-off of our proposed local classifier, and indicate the importance of selecting
an appropriate neighborhood size to train the local classifier such that it can tolerant the spa-
tial misalignment. Our local learning scheme can accommodate any pixel classifiers with
arbitrary features. In experiments we compare our method with alternative ways of fusion
of feature f and location (x,y). The results validate that when properly trained, our proposed
local classifier can be more effective than alternative ways that rely on global classifier. On
both pedestrian parsing and Weizmann horse segmentation, our local learning can signifi-
cantly improve the performance when compared with existing methods.
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