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Abstract

In contrast to traditional flat classification problems (e.g., binary or multi-class classi-
fication), Hierarchical Multi-label Classification (HMC) takes into account the structural
information embedded in the class hierarchy. In this paper, we propose a local hierarchi-
cal ensemble framework, Fully Associative Ensemble Learning (FAEL). We model the
relationship between each node’s global prediction and the local predictions of all the
nodes as a multi-variable regression problem. The simplest version of our model leads
to a ridge regression problem. It can be extended using the kernel trick, which explores
the complex correlation between global and local prediction. In addition, we introduce
a binary constraint model to restrict the optimal weight matrix learning. The proposed
models have been applied to image annotation and gene function prediction datasets. The
experimental results indicate that our models achieve better performance when compared
with other baseline methods.

1 Introduction

Hierarchical Multi-label Classification (HMC) is a variant of classification where each sam-
ple has more than one label and all these labels are organized hierarchically in a tree or Direct
Acyclic Graph (DAG). In reality, HMC can be applied to many different domains [4, 6, 15].
In web page classification, one website with the label “football” could be labeled with a high
level label “sport”. In image annotation, an image tagged as “outdoor” might have other low
level concept labels, like “beach” or “garden”. In gene function prediction, a gene can be si-
multaneously labeled as “metabolism™ and “catalytic or binding activities” by the biological
process hierarchy and the molecular function hierarchy, respectively.

A rich source of hierarchical information in tree and DAG structures is helpful to im-
prove classification performance. Based on how this information is used, previous HMC
approaches can be divided into global (big-bang) or local [16]. Global approaches learn a
single model for the whole class hierarchy. Many classic machine learning algorithms have
been extended to global approaches. Wang et al. [21] used association rules for hierarchical
document categorization. Vens et al. [19] introduced a modified version of decision tree for
HMC. Based on a predictive cluster tree, Dimitrovski et al. [6] proposed the cluster-HMC al-
gorithm for medical image annotation. Global approaches enjoy smaller model size because
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they build one model for the whole hierarchy. However, they ignore the local modularity,
which is an essential advantage of HMC. Local approaches first build local classifiers on
each node of the class hierarchy. Then, hierarchical information is aggregated across the
local prediction results of all the local classifiers to obtain the global prediction results for
all the nodes. We hereafter refer to “local prediction result” and “global prediction result”
as “local prediction” and “global prediction”, respectively. Dumais and Chen [7] applied a
multiplicative threshold to update local prediction. The posterior probability is computed
based on the parent-child relationship. Barutcuoglu and DeCoro [2] proposed a Bayesian
aggregation model for image shape classification. The main idea is to obtain the most prob-
able consistent set of global predictions. Valentini [18] presented the True Path Rule (TPR)
ensembles. In that method, positive local predictions of child nodes affect their parent nodes
and negative local predictions of non-leaf nodes affect their descendant nodes.

Previous local approaches suffer from three drawbacks. First, most of them focus only on
the parent-child relationship. Other relationships in the hierarchy (e.g., ancestor-descendant,
siblings) are ignored. Second, their models are sensitive to local prediction. The error of
one local node will propagate to other nodes in the hierarchy. Third, most local methods
assume that the local structural constraint between two nodes will be reflected in their local
predictions. However, this assumption might be shaken by different choices of features, local
classification models and positive-negative sample selection rules [9, 17]. In such situations,
previous methods would fail to integrate valid structural information into local prediction.

In this paper, we propose a novel local HMC framework, Fully Associative Ensemble
Learning (FAEL). We call it “fully associative ensemble” because in our model the global
prediction of each node takes into account the relationships between the current node and all
the other nodes. Specifically, a multi-variable regression model is built to minimize the em-
pirical loss between the global predictions of all the training samples and their corresponding
true label observations.

Our contributions are: we (i) developed a novel local hierarchical ensemble framework,
in which all the structural relationships in the class hierarchy are used to obtain global pre-
diction; (ii) introduced empirical loss minimization into HMC, so that the learned model can
capture the most useful information from historical data; and (iii) proposed kernel and binary
constraint HMC models.

The rest of this paper is organized as follows: in Section 2 we discuss related work. Sec-
tion 3 describes the proposed FAEL models. The experimental design, results and analysis
are presented in Section 4. Section 5 concludes the paper.

2 Related Work

This work is inspired by both top-down and bottom-up local models. The top-down models
propagate predictions from high level nodes to the bottom [7, 13]. In contrast, the bottom-up
models propagate predictions from the bottom to the whole hierarchy [3, 10]. As a state-of-
the-art method, the TPR ensemble integrates both top-down and bottom-up rules [18]. The
global prediction of each parent node is updated by the positive local predictions of its child
nodes. Then, a top-down rule is applied to synchronize the obtained global predictions. In
contrast to TPR, our model incorporates all pairs of hierarchical relationships and attempts to
learn a fully associative weight matrix from training data. Take the “human” sub-hierarchy
from the extended IAPR TC-12 image dataset [8] for example, Figure 1 depicts the merits
of our model and shows the contributions of different nodes on each local prediction. The
weight matrix computed indicates that each local node influences the nodes of the same path


Citation
Citation
{Dumais and Chen} 2000

Citation
Citation
{Barutcuoglu and DeCoro} 2006

Citation
Citation
{Valentini} 2011

Citation
Citation
{Fagni and Sebastiani} 2007

Citation
Citation
{Silla and Freitas} 2009

Citation
Citation
{Dumais and Chen} 2000

Citation
Citation
{Jiang, Nariai, Steffen, Kasif, and Kolaczyk} 2008

Citation
Citation
{Bennett and Nguyen} 2009

Citation
Citation
{Guan, Myers, Hess, Barutcuoglu, Caudy, and Troyanskaya} 2008

Citation
Citation
{Valentini} 2011

Citation
Citation
{Escalante, Hern{á}ndez, Gonzalez, L{ó}pez-L{ó}pez, Montes, Morales, Sucar, Villase{ñ}or, and Grubinger} 2010


ZHANG, SHAH, KAKADIARIS: FULLY ASSOCIATIVE ENSEMBLE LEARNING 3

(0 human )
G perso@ (2 couplefoffperson) @ group ofpersolb
~
C7 WOI‘I‘IIIID (8 divel') C9 l'aﬂer) @) face of pEl‘SOID @1 hand ofpersu@ @2 head of pel‘su@

13 child boy) (14 child girl

T T T T T T T T T T T T

098 -003 -003 001 005 001 003 003 003 -010 003 -0.00 0.02 0.024

- -0.00 -0.06 -0.00 -0.01 -0.01 -0.03 -001 -012 -003 -0.03- 1.40
-0.00

1.62
—0.14 -0.06 1.19 -002 -000 -0.01 -000 -0.01 -006 -000 -004 -001 -0.014

1

2

3 1.20
4-037 -0.03 -0.03 038 -005 000 -0.00 -001 -0.00 -0.05 000 -0.03 -0.038 -0.024
5-005 -0.08 -0.03 -0.01 114 -001 -004 -004 -004 -0.03 -0.03 -0.09 035 035 1.00
6-035 -0.04 -003 000 -004 049 -001 -002 -001 -0.10 000 -0.04 -0.02 -0.024 0.80
7-007 000 -0.01 -0.01 -0.08 -0.01 1145 -007 -007 007 -0.03 -0.04 -0.04 -0.03
8-013 -0.01 -0.03 -0.01 -010 -0.01 -0.13 132 -008 -0.03 -0.03 -0.10 -0.05 -0.047
9-021 -0.06 -0.07 -0.01 -0.09 -001 -0.14 -006 138 -0.01 -0.03 -0.06 -0.04 -0.04- 0.40
10-014 -004 -003 -0.01 -0.10 -0.01 -0.04 -0.04 -004 146 -0.03 -0.05 -0.04+ 0.20
11022 -006 -0.03 -0.01 -0.09 -0.01 -0.02 -0.03 -003 -013 1.20 . -0.05 -0.04-

12014 -004 -003 -001 -011 -0.01 -004 -004 -004 - -003 147 -005 -0.05+
13009 -001 -0.01 -0.00 018 000 -0.00 -0.01 -0.00 -003 -0.00 -0.02 092 -0.20
1470‘13 -0.03 -0.03 -OPO 0. ?7 090 -0‘01 -0‘01 -D‘DO -0\01 -0.01 -092 I—U 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.00

Figure 1: (Top) The “human” sub-hierarchy. (Bottom) The weight matrix W* learned from
B-FAEL. For the non-leaf nodes 1 and 5 in (Top), using TPR, the global predictions are
decided by their local prediction and the local predictions (those above threshold 0.5) of the
child nodes. Using our model, they are made by the local predictions of all the fourteen
non-root nodes. In (Bottom), we can observe that the nodes in the same path give positive
weight, the other nodes give negative weight. For the remaining twelve leaf nodes, TPR uses
local prediction as global prediction directly. In (Bottom), except for W', and W7, the
nodes in the same path give positive or zero weights, the other nodes give negative or zero
weights. These observations are consistent with the fact that each image region is annotated
by the labels of one continuous path from the root to the bottom gradually and exclusively.

positively while nodes not directly connected in the hierarchy provide a negative influence.
Since the weight matrix of our model is learned based on all the training samples, we can
minimize the influence of outlier examples of each node. The learning model also helps to
avoid the error propagation problem, because all the global predictions are obtained simul-
taneously.

The proposed framework also inherits features from Multi-Task Learning (MTL) meth-
ods [5, 11, 22, 23]. Our model is close to the MTLs with tree or graph structures, where
pre-defined structural information is extracted to fit the learning model [12, 14]. Similar to
these MTLs, our hierarchical ensemble model can use various loss functions and regulariza-
tion terms. One major difference lies in the features used in the model. In the MTLs, the
features are shared consistently over all the tasks and they must be the same for each task.
In our model, local predictions of all the nodes are used as features. Therefore, each local
classifier can be built by completely different features.
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3 Fully Associative Ensemble Learning

Let S = {s1,52,...,5, } represent a hierarchical multi-label training set, which consists of n
samples. Its hierarchical label set is denoted by C = {c|,c2,...,¢;}. There are [ labels in
total, and each label corresponds to one unique node in hierarchy H. The training label
matrix is defined as a binary matrix ¥ = {y;;}, with size n x [. If the i’* sample has the j'*
label, y;; = 1, otherwise y;; = 0. As a local approach, local classifiers F = {fi, f>,..., fi}
are built on each node. The local predictions of S are denoted by matrix X = {x;;}, where
x;; represents the prediction of the i sample on the j* label. A probabilistic classifier is
used as the local learner, so we have x;; € [0,1]. Similarly, we represent the global prediction
matrix by ¥ = {3 i} with size n x [. In our model, global prediction is achieved based on
local prediction and hierarchical information. To take all the node-to-node relationships
into account, we define W = {w;;} as a weight matrix, where w;; represents the weight of
the " label’s local prediction to the j”* label’s global prediction. Thus, each label’s global
prediction is a weighted sum of the local predictions of all the nodes in H. The global
prediction matrix Y is computed as: Y =XW.

3.1 The Basic Model

The simplest way to estimate the weight matrix W is by minimizing the squared loss between
the global prediction matrix ¥ with the true label matrix Y. To reduce the variance of w;;, we
penalize the Frobenius norm of W and obtain the following objective function:

min||Y — XWI|7 + AW, (1

where the first term measures the empirical loss of the training set, the second term controls
the generalization error, and A; is a regularization parameter. The above function is known
as ridge regression. Taking derivatives w.r.t. W and setting to zero, we have:

W= (X"X+ A1) XY, )

where [; represents the [ x [ identity matrix. Thus, we obtain an analytical solution for the
basic FAEL model.

3.2 The Kernel Model

To capture the complex correlation between global and local prediction, we can generalize
the above basic model using the kernel trick. Let & represent the map applied to each exam-
ple’s local prediction vector x;. A kernel function is induced by K(x;,x;) = ®(x;)” ®(x;).
By replacing the term X in (1), we obtain:

min |¥ — SWi |7+ A [ W - 3)
k

After several matrix manipulations [ 1], the solution of W, becomes:
Wi = (@' o+ 41) @Y =@ (@07 +2,1,) 'Y, )
where I, represents the n x n identity matrix. For a given testing example s’ and its local

prediction x’, the global prediction y' is obtained by ¥ = x'W. For a kernel version, we
obtain:
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Vi = @(x" )W = P(x')@" (PD” —|—MI,,)71 Y =K(x',x)(K(x,x)+M1,)"'Y, (5

where K(x',x) = [k(x',x!),k(x,x?),....k(x,x")] and K(x,x) = {k(x;,X;)} are both kernel
computations.

One potential drawback of the above kernel model is its scalability. During the training
phase, the complexity of computing and storing K (x,x) is significant even for moderate size
problems. Therefore, we adopt a simple sample-selection technique to reduce the kernel
complexity of large-scale datasets. First, we sort the training set based on the difference
between each sample’s true label observations and the global predictions obtained from the
basic model. Then, the top ng(ny < n) samples with smallest differences are selected to
build the kernel model, which reduces the kernel complexity from O(n x n) to O(ny X ny,).
Moreover, sample selection is also helpful to exclude outliers.

3.3 The Binary Constraint Model

Another limitation of the basic model is that the weights between different nodes are con-
sidered independently. To make full use of the hierarchical relationships between different
nodes, we introduce a regularization term to the optimization function in (1).

The hierarchical structure can be viewed as a set of “binary constraints” among all the
nodes. Here, we only focus on the “parent-child” constraints and the “ancestor-descendent”
constraints. Let R = {ri(cp,cy)} denote the binary constraint set of hierarchy #. Each
member r;(c,,cq) meets either ¢, =1 ¢4 or ¢, =1} ¢4, where “1” and ““ 1} ” represent the
“parent-child” constraint and the “ancestor-descendent” constraint, respectively [16]. The
size of R depends on the structure of 7. Its maximum is / x (I — 1)/2, which is equal to the
number of all the possible constraints. In this case, there is only one path from the root node
to the single leaf node in the hierarchy. Now, we introduce a weight restriction to each pair
of nodes in R. Define coefficient m,, € RT for the i’ pair r;(c,,c,), so that:

Wpk = Mpg * Wy (6)

The intuition behind this definition is that high-level nodes should give larger weights than
low-level nodes. For the global prediction of node &, the weight of node p is m,, times the
weight of node g. The value of m,, is set by:

- K cp=T¢q
mpq—{ H*(qu‘i’l) C[I:ﬂcq ) (7)

where p is a positive constant and e, represents the number of nodes between p and g.
Thus, the coefficient of an “ancestor-descendent” constraint is larger than that of a “parent-
child” constraint. Specifically, it is decided by the depth difference of the two corresponding
nodes in the hierarchy. All the restrictions over the hierarchy are summarized as:

[R|

I
Z 1;1 (Wpk — Mipg * qu)2 : ®)

ri(cpscq)

To convert the above equations into a matrix version, we introduce a sparse matrix M =
[m;,my, ...,m‘R‘]T, in which the /" row m; corresponds to the " pair in R. Each row in M
has only two non-zero entries. The p'” entry is 1 and the ¢ entry is —Mpg, all the other
entries are zero. Thus, we obtain the regularization term of the binary constraint model:
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Rl 1
Y Y Wk —mpg #wgr)” = | MW |3 )
k=1

ri(epicq)

Adding this term to (1), the optimization function becomes:
min [ ¥ — X Wy [+ A [Wp |7+ A2 MW | - (10)

Taking the derivative w.r.t. Wj, setting to zero, and merging similar terms, we obtain:
XTX + ML+ 2M" M)W, =XxTY. (11)

The analytical solution of the binary constraint model is given by:
Wy = (X"X + Al + 2oM™ M) "' X7, (12)

The analytical solution ensures a low computational complexity for this model. In practice,
we can also choose a small number of rows from M to build the regularization term and focus
on a more specific constraint set.

3.4 Hierarchical Prediction

After we get the global predictions of all the nodes, the next step is to set thresholds for the
global prediction of each node, and assign proper labels for each testing sample. In the TPR
model, the author uses 0.5 as the threshold of all the nodes, which ignores the distribution
difference of positive and negative samples. Here, the threshold is learned to separate them
averagely. Let d = {d|,da,...,d;} denote the threshold set of global prediction, where d;
corresponds to node i. Let Sl.+ and S; represent the positive and negative training sets
of node i, respectively. Their global predictions are computed as Z+ and Z*. We define
threshold d; as the midpoint of the averaged positive and negative global predictions of node
i
1 o~ 1 ~
di:oj*(@i)’ﬁ_ﬁzyjf) (13)
il il
where )7; and)ﬁ-i represent the global prediction of the j/* sample in S and 87, respectively.
Based on the learned thresholds, the output labels of each testing sample should be con-
sistent with the hierarchical structure. All the labels with positive output can be linked into
one or multiple continuous paths from the root to the bottom in hierarchy . Here we apply

bottom-up strategy to synchronize the output labels. Given a testing sample s” with global
prediction ¥* = [/},5%, ..., ], its final output o' = [0}, 0}, ...,0}] is decided by:

1 517 > d;
oi=¢ 1 Y >di,ci=tceor frep . (14)
0 otherwise

Note that from the above rule, we might obtain multiple valid paths as final output. It
is appropriate for some applications such as gene function prediction where each gene can
have more than one path in the “FunCat” hierarchy. However, in other applications such as
image annotation, the ideal output is one path of the conceptual hierarchy that indicates the
exact content of each image region. In this case, we average the global predictions on each
continuous path and return the maximum path. The pseudo-code of the proposed framework
is summarized in Algorithm 1.
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Algorithm 1: The Fully Associative Ensemble Learning
Input: 8" = {s{,s5,....5,},C = {c1,c2,..,c1}, H, Y = {yj;} € R"™! and
S’A: {s),55,....80,}
Output: Y’ = {3};} e R and O0' = {0} € R"™/
1 fori< 1toldo
2 Select positive and negative examples for node i
3 Build a local classifier f; on node i
4 Compute the local prediction of " on node i, f;(S")

5 Select binary constraint pairs and obtain M

6 Compute W with (2), (12) and (4)

7 Compute d for all the nodes with (13)

8 for i<« 1to mdo

9 Compute the local prediction of s on each node, x; = f(s})
10 | Compute the global prediction of 5% with y; = x! x W and (5)
11 Compute the final output with (14)

12 return {Y',0'} ;

2. entity->->landscape-nature->_cloud

3. entity->->man-made->construction->edifice->building
4. entity->->landscape-nature->vegetation->trees->_trunk
5. entity->->landscape-nature->vegetation->trees->palm

| 6. entity->->landscape-nature->_cloud

8. entity->->man-made->vehicle->ground-vehicles->vehicles-with-tires->car
9. entity->->humans->_group-of-persons

¥ £ ‘ 10. entity->->humans->_couple-of-persons
m 11. entity->->man-made->construction->road

12. entity->->man-made->furniture->window

Figure 2: Sample image with hierarchical annotations.

4 Experiments
4.1 Image Annotation

In this section, we present our evaluation of the proposed models on the extended IAPR
TC-12 image collection [8]. In this dataset, every image is segmented into several regions
and each region is annotated by a set of labels from a conceptual hierarchy. Figure 2 de-
picts a sample image and its corresponding labels. The whole conceptual hierarchy consists
of 275 nodes which are located in six main branches: “animal”, “landscape”, “man-made”,
“human”, “food” and “other”. Considering their conceptual difference and hierarchy size,
we build five separate sub-hierarchies with the first five main branches. Their detailed de-
scriptions are shown in Table 1. The “other” branch is excluded because it has only six child
nodes with the same depth.

Given the original features from the dataset, each region is viewed as a sample. In order
to build three-fold cross-validation, we ignore the nodes that have less than ten samples.
Based on [8], we use Random Forests as the basic classifier under the one-versus-all sample
selection technique. The number of trees in Random Forests is set to 100. In our models,
A1 is set to 0.5. We choose Gaussian kernel in the Kernel FAEL model (K-FAEL). The
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Sub-hierarchy ~ Number of samples Number of nodes ~ Depth of tree

animal 1,999 41 5
food 861 5 3
human 17,011 14 4
landscape 45,048 42 4
man-made 33,984 99 5

Table 1: The extended IAPR TC-12 sub-hierarchy descriptions.

Models F-measure Hierarchical F-measure
animal food human  landscape  man-made | animal food human  landscape  man-made

TD 0.129 0.345 0.233 0.264 0.067 0.319 0.375 0.605 0.501 0.179
TPR 0.138 0.345 0.234 0.274 0.073 0.327 0.375 0.605 0.504 0.186
TPR-w 0.140 0.345 0.234 0.274 0.075 0.329 0.375 0.605 0.504 0.189
FAEL 0.211 0.397 0.303 0.348 0.133 0.410 0.463 0.624 0.566 0.269
K-FAEL 0.266 0.408 0.310 0.331 0.147 0.436 0.473 0.632 0.588 0.307
B-FAEL 0.290 0.397 0.350 0.388 0.199 0.489 0.469 0.626 0.579 0.382

Table 2: F-measure and Hierarchical F-measure results on the image annotation dataset.

parameter o is set to 0.05. Additional experiments not detailed in this paper indicate that
our models are not sensitive to the choices of A; and 6. In K-FAEL, we apply the sample
selection technique to the training sets with more than 5,000 samples (ry is set to 5,000). To
test the performance of the Binary constraint FAEL model (B-FAEL), we set 4, to different
values A, = {0,10,20,...100}, u is set to 2. It is obvious that B-FAEL would degenerate
to FAEL when A, is equal to 0. We compare the proposed models with the Top-Down
(TD) algorithm, TPR and weighted TPR (TPR-w) [18] under F-measure and Hierarchical
F-measure. The results are summarized in Table 2 (B-FAEL with the best choice of A;).
Figure 3 depicts the performance of B-FAEL with respect to A5.

From Table 2 we can observe that the proposed models perform better than other HMC
algorithms. Under F-measure, B-FAEL achieves the best results on four sub-hierarchies. In
the “food” hierarchy, the result of K-FAEL (0.408) is better than that of B-FAEL (0.397).
As we know, the classic F-measure is designed for unstructured flat classification problems.
Here, it evaluates the average prediction performance of all the nodes. By integrating struc-
tural information of prediction, Hierarchical F-measure is a more appropriate performance
metric in HMC [18, 20]. Under Hierarchical F-measure, K-FAEL performs better on the two
small size hierarchies (“food” and “human’) and one moderate size hierarchy (“landscape”).
B-FAEL performs better on the other moderate size hierarchy (“animal”) and the large size
hierarchy (“man-made”). The main reason is that B-FAEL can be limited by the number of

animal
08

food
= = human
07 landscape
—&— manmade

e s — b —— b —— b — - —

F-measure
o
Q@
@

03’

Hicrarchical F-measure

Figure 3: B-FAEL performance on the image annotation dataset.
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Datasets Description A B C D
Pfam-1 protein domain binary data from Pfam data 3,529 4,950 211 5
Pfam-2 protein domain log E data from Pfam data 3,529 5,724 211 5
Expr gene Expression data 4,532 250 230 5
PPI-BG PPI data from BioGRID 4531 5367 232 5
PPI-VM PPI data from Von Mering experiments 2,338 2,559 177 5
SP-sim Sequence Pairwise similarity data 3,527 6349 211 5

Table 3: The gene function dataset descriptions. Columns A, B, C, D represent number of
samples, number of features, number of nodes and depth of tree, respectively.

Models F-measure Hierarchical F-measure
Pfam-1 Pfam-2 Expr PPI-BG  PPI-VM  SP-sim | Pfam-1 Pfam-2 Expr PPI-BG  PPI-VM  SP-sim

TD 0.404 0.206 0.062 0.269 0.359 0.249 0.412 0.341 0.117 0323 0.398 0.425
TPR 0.362 0.156 0.070 0.234 0.261 0.131 0.308 0.268 0.170 0.267 0.280 0.226
TPR-w 0.404 0.220 0.077 0.295 0.356 0.254 0.413 0.370 0.178 0.349 0.400 0.447
FAEL 0.395 0.303 0.135 0.278 0.394 0.339 0.442 0.429 0.533 0.445 0.466 0.362
K-FAEL 0.398 0.346 0.154 0.345 0.401 0.347 0.443 0.454 0.515 0.451 0.474 0.376
B-FAEL 0.395 0.303 0.135 0.278 0.394 0.339 0.457 0.498 0.596 0.543 0.477 0.406

Table 4: F-measure and Hierarchical F-measure results on the gene function datasets.

constraints in small and moderate size hierarchies. In Figure 3, B-FAEL improves both F-
measure and Hierarchical F-measure performance on four sub-hierarchies. As A, increases,
the performance first goes up and then becomes stable after reaching a peak. With a small
hierarchy size of 5 nodes, the performance on the “food” hierarchy is basically unchanged.

4.2 Gene Function Prediction

Gene function prediction is another complex HMC problem. We use six yeast datasets inte-
grated in [18]. Their descriptions are summarized in Table 3. To compare with the results
of TD, TPR and TPR-w in [18], we use the same experimental settings. The results are
summarized in Table 4. Figure 4 depicts the performance of B-FAEL with respect to A5.

As we can observe from Table 4, the proposed models obtain better or competitive per-
formance in all the gene function datasets. Under flat measurement F-measure, K-FAEL
achieves the best results in five data sets. In the Pfam-1 dataset, the result of K-FAEL (0.398)
is very close to the best result (0.404) achieved by TD and TPR-w. Under Hierarchical F-
measure, our models improve the performance on five datasets. In the SP-sim dataset, the
results of our models (0.362, 0.376 and 0.406) are a little worse than that of TPR-w (0.447).

From Figure 4 we observe that, compared with FAEL and K-FAEL, the B-FAEL model

Pfam-1 Pfam-1
Pfam2
=4 =Expr
PPLEG
085 —6— PPLYM
s SPsim

it e e b L P |

F-measure
Hierarchical F-measure
&

N

0 20 30 4 & Eed 70 80 90 100 0O W 20 I} 4 s 60 70 80 91 100

Figure 4: B-FAEL performance on the gene function datasets.
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achieves better performance in Hierarchical F-measure. On the other hand, as A, becomes
larger, the F-measure performance of B-FAEL is worse than that of FAEL and K-FAEL.
There are two reasons. First, the binary constraint model enforces the hierarchical consis-
tency, which might weaken the independent discriminative ability of some nodes. Second,
the “FunCat” hierarchy has large size and high complexity. With the given features, the
binary constraint model cannot optimize both flat and hierarchical performance.

5 Conclusion

This paper introduces a novel HMC framework. We build a multi-variable regression model
between the global and local predictions of all the nodes. The basic model is extended to
the kernel model and the binary constraint model. Our work raises a number of questions
that we plan to address in the future. For example, how to choose a limited number of
hierarchical constraints to build an effective binary constraint model and how to determine a
better threshold for global prediction.
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