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Abstract

We propose a method for fully automatic calibration of traffic surveillance cameras.
This method allows for calibration of the camera – including scale – without any user
input, only from several minutes of input surveillance video. The targeted applications
include speed measurement, measurement of vehicle dimensions, vehicle classification,
etc. The first step of our approach is camera calibration by determining three vanishing
points defining the stream of vehicles. The second step is construction of 3D bounding
boxes of individual vehicles and their measurement up to scale. We propose to first
construct the projection of the bounding boxes and then, by using the camera calibration
obtained earlier, create their 3D representation. In the third step, we use the dimensions
of the 3D bounding boxes for calibration of the scene scale. We collected a dataset
with ground truth speed and distance measurements and evaluate our approach on it.
The achieved mean accuracy of speed and distance measurement is below 2%. Our
efficient C++ implementation runs in real time on a low-end processor (Core i3) with a
safe margin even for full-HD videos.

1 Introduction
Automatic visual surveillance is useful in organization of traffic – for collecting statistical
data [22], for immediate controlling of traffic signals [21], for law enforcement [17, 30], etc.
Existing systems typically require manual setup, often involving physical measurements in
the scene of interest [13]. Our goal is to process traffic data fully automatically, without any
user input. This includes assessment of camera intrinsic parameters, extrinsic parameters in
relation to the stream of traffic, and scale of the ground plane which allows for measurement
in the real world units – Fig. 1.

Some existing works in automatic traffic surveillance require user input in the form of
annotation of the lane marking with known lane width [32] or marking dimensions [3], cam-
era position [24, 32], average vehicle size [6, 29] or average vehicle speed [25]. A common
feature of virtually all methods is detection of the vanishing point corresponding to the direc-
tion of moving vehicles (full camera calibration requires three orthogonal vanishing points
[2, 5, 8]). A popular approach to obtaining this VP is to use road lines [9, 26, 35] or lanes
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Figure 1: We automatically determine 3 orthogonal vanishing points, construct vehicle
bounding boxes (left), and automatically determine the camera scale by knowing the statis-
tics of vehicle dimensions. This allows us to measure dimensions and speed (middle) and
analyze the traffic scene (right).

[7, 12, 26], more or less automatically extracted from the image. These approaches typically
require a high number of traffic lanes and a consistent and well visible lane marking. An-
other class of methods disregard the line marking on the road (because of its instability and
impossible automatic detection) and observe the motion of the vehicles, assuming straight
and parallel trajectories in a dominant part of the view. Schoepflin and Dailey [25] construct
an activity map of the road with multiple lanes and segment out individual lanes. Again, this
approach relies on observing a high number of traffic lanes – high-capacity motorways and
similar settings. Other researchers detect vehicles by a boosted detector and observe their
movement [19], or analyze edges present on the vehicles [34]. Beymer et al. [1] accumu-
late tracked feature points, but also require the user to provide defined lines by manual input.
Kanhere and Birchfield [18] took a specific approach for cameras placed low above the street
level. Once the calibration and scene scale is available, the road plane can be rectified and
various applications such as speed measurement can be done [3, 4, 14, 24, 36].

In our approach, we assume that the majority of vehicles move in approximately straight,
mutually parallel trajectories (experiments verify that our method is tolerant to a high number
of outliers from this assumption). Also, the trajectories do not have to be approximately
straight across their whole span – only a significant straight part is sufficient. This makes
our approach easily and reliably applicable on a vast majority of real traffic surveillance
videos. The calibration of internal and external parameters of the camera is achieved by first
computing three orthogonal vanishing points which define the vehicle motion [11].

Similarly to others [25, 26], we assume a pinhole camera with principal point in the
image center. The principal point would be difficult (or impossible) to obtain otherwise,
because the camera cannot move and no calibration pattern can be used. At the same time,
this assumption does not harm the targeted applications (speed/distance measurement, traffic
lane identification, . . . ). Unlike previous works, we do not assume exactly horizontal scene
horizon [12, 14, 25]. We find this assumption too limiting and we deal with it by properly
finding the second vanishing point defining the scene (Sec. 2.1). We assume zero radial
distortion of the camera, but our previous work [11] offers a solution for automatic radial
distortion compensation.

Once the camera intrinsic and extrinsic calibration (up to scale) defined by three or-
thogonal vanishing points is determined, we propose to construct 3D bounding boxes of the
vehicles based on the assumption of flat ground plane. The dimensions of the 3D bounding
boxes of a number of observed cars (experiments show that after processing approximately
50 cars, the scale is within 2% from the final value) can be used for adaptation of the scale
to a known distribution of car dimensions. The proposed 3D bounding boxes are easily con-
structed and their construction is computationally cheap. At the same time, they provide
some 3D insight into the scene observed by a stationary camera, unavailable to existing ap-
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proaches mentioned earlier. We are showing that once the camera calibration including scale
is computed, our method allows for reasonably accurate measurement of vehicle speed and
various dimensions in the scene, including 3D dimensions of passing vehicles. The bound-
ing boxes can be used for other tasks as well – we are showing improved analysis of traffic
lanes directly obtained from the geometry of the bounding boxes.

2 Traffic Analysis from Uncalibrated Cameras
Section 2.1 reviews our camera calibration algorithm [11]. Based on it, we propose to con-
struct 3D bounding boxes of observed vehicles (Sec. 2.2). The dimensions of bounding boxes
are statistically domain-adapted to known distribution of vehicle dimensions (Sec. 2.3) in or-
der to obtain the scene-specific scale.

2.1 Camera Calibration from Vehicle Motion
In order to make this paper self-contained, we summarize here our calibration method [11].
It enables recovering of the focal length of the camera and its orientation with respect to the
stream of traffic. It detects two originally orthogonal directions – 1st in the direction of the
traffic and 2nd which is perpendicular to the 1st direction and parallel to the road. Assuming
that the camera’s principal point is in the center of the projection plane, the 3rd orthogonal
direction and the focal length can be calculated. The detection method uses Hough transform
based on the parallel coordinates [10], which maps the whole 2D projective plane into a finite
space referred to as the diamond space by a piecewise linear mapping of lines.

For the detection of the 1st vanishing point, feature points are detected and tracked by
KLT tracker in the subsequent frame. Successfully detected and tracked points exhibiting a
significant movement are treated as linear fragments of vehicle trajectories. All these lines
vote in the diamond space accumulator. The most voted point is considered to be the first
vanishing point. Figure 2 (left) shows the tracked points accumulated to the diamond space.

The second vanishing point corresponds to the direction parallel to the road (or the
ground plane) and is perpendicular to the first direction. Again, the diamond space [10] is

Figure 2: (left) Tracked points used for estimation of the 1st VP. Points marked by green
exhibit a significant movement and they are accumulated. Points marked by yellow are
stable points and do not vote. The accumulated diamond space is in the top left corner.
(right) Accumulation of the 2nd vanishing point. Blue edges belong to the background. Red
edges are omitted from voting because of their vertical direction or direction towards the first
VP. Green edges are accumulated to the diamond space (in the top left corner; green circle
marks the maximum).
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used for its detection. Many edges on the vehicles coincide with the second vanishing point
and thus we let them vote in the accumulation space. An edge background model is used
in order to select only edges on moving objects – probable vehicles. The model is updated
by each frame to deal with shadows and other slow changes. The edge background model
stores for each pixel the confidence score of occurrence of an oriented edge (eight bins are
used to store likelihoods for different orientations). The edges passing the background test
are further processed and filtered. The first vanishing point is known from the previous pro-
cessing and edges supporting this VP are excluded from accumulation. Also the edges with
approximately vertical direction are omitted from voting, based on the assumption of scene
horizon being approximately horizontal (with a high tolerance, e.g. ±45◦). This condition
can be disregarded when the first VP is detected to be close to infinity. In such a case, edges
supporting the second VP are allowed to have vertical direction. Figure 2 (right) shows the
edge background model, omitted and accumulated edges together with the diamond space.

2.2 Construction of 3D Bounding Boxes
The next step of our approach is construction of 3D bounding boxes of the observed vehicles
(see Fig. 3 (IV) for an example). We assume that vehicle silhouettes can be extracted by
background modeling and foreground detection [27, 37]. Detection of foreground blobs for
vehicles can be done reliably, including removal of shadows [15]. Further we assume that
the vehicles of interest are moving from/towards the first vanishing point (Sec. 2.1). In fact,
all detected foreground blobs in the input video are filtered by this criterion, which leads to
disposal of invalid blobs.

Our approach is based on an observation, that vehicle blobs tend to have some edges very
stable and reliable. Refer to Fig. 3 for an illustration where the detected blob of the car is
colored and rest of the image is desaturated. In the given situation, red lines pass through the
1st VP and they are tangent to the vehicle’s blob. Green lines are blob’s tangents coinciding
with the 2nd VP; blue tangents pass through the 3rd VP. The two tangents corresponding to
the VP are lines with minimal and maximal orientation passing thought the VP and the points
from convex hull of the blob.

Because the blobs are not accurate and the cars are not exactly boxes, the fitting of the
bounding box is ambiguous, i.e. the order in which the tangents and their intersections are
extracted matters. We propose the following order, which appears to be the most stable one.
Firstly, point A is constructed as the intersection of the lower red and green tangent. Then,
points B and C are defined by intersections of the lower green tangent with right blue and the
lower red with left blue, respectively, Fig. 3 (I). Constructed line segments AB and AC define
the shorter and the longer side of the box base. Point D lies on the intersection of the upper
green tangent and the left blue tangent. Together with the line passing through point A and

A
B

C

(I)

D

E
F

(II)

G

H

(III) (IV)

Figure 3: Construction of vehicle’s 3D bounding box. (I) Tangent lines and their relevant
intersections A,B,C. (II) Derived lines and their intersections E,D,F . (III) Derived lines
and intersection H. (IV) Constructed bounding box.
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the 3rd VP it uniquely defines point E, Fig. 3 (II). Point E can be also constructed using point
F – leading to an alternative position of point E. We choose point E with the larger distance
|AE|, which ensures that the whole blob will be enclosed in the bounding box. With known
F and D, point G is the intersection of the line through D and 2nd VP with line through F
and 1st VP, Fig. 3 (III).

When the configuration of the vanishing points with respect to the center of the fore-
ground blob is different from the one discussed in the previous paragraphs, the set and order
of used tangent lines and points slightly changes. The change is self-evident and follows the
principles sketched above. Figure 4 shows other possible orientations of the bounding box
with respect to different configurations of VPs.

Figure 4: Different bounding boxes depending on positions of the vanishing points with
respect to the camera. Because of rounded corners of the car, the edges of the bounding box
would not fit tight to the car. However, in most cases, at least one dimension fits tight and
this is enough to find the scale.

Because the roof and sides of the car are typically somewhat bent, the detected bounding
box can be slightly smaller that in reality. However, we count with this inaccuracy in the
domain adaptation procedure and prefer the best matching pair of bounding box sides for
further computation. The experiments show that the final accuracy is not harmed by the
slightly diminished detected bounding boxes (Sec. 3). In order to be able to determine the
vehicles dimensions accurately, shadows need to be removed from the detected foreground
objects. Elaborate shadow removal exceeds the scope of our work, but it has been addressed
by other researchers [31, 33]. In our work, we assume only the presence of soft shadows and
we use the method of Horprasert et al. [15] for their removal.

2.3 Statistical Domain Adaptation of Vehicle Dimensions
Having the bounding box projection, it is directly possible to calculate the 3D bounding
box dimensions (and position in the scene) up to precise scale (Figure 5). We consider a
three-dimensional coordinate system with camera coordinates O = [px, py,0], center of the
projection plane P = [px, py, f ] (where [px, py] is the principal point) and three orthogonal
directions derived from the detected vanishing points in the image. Firstly, plane ℘ parallel
to the road ground plane is constructed – its orientation is known since the direction of
the 3rd VP is perpendicular to this plane; its distance from the camera is chosen arbitrarily.
Figure 5 shows two possible placements of the plane and the influence of such placement –
the closer the plane is to the camera, the smaller the objects appear. The detected corners of
the bounding box (points A,B,C,E) are projected to the plane:

Aw =℘∩←→OA, Bw =℘∩←→OB, Cw =℘∩←→OC,

Ew = pE ∩
←→
OE; pE ⊥℘∧Aw ∈ pE .

(1)

When the world coordinates of the bounding box corners are known, it is possible to
determine the (somehow scaled) dimensions of the box: (l,w,h)= (|AwCw|, |AwBw|, |AwEw|).
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}

Aw

Cw

Ew

O

P
A

Figure 5: Calculation of the world coordinates. Plane℘ is parallel to the road and it is derived
from the detected VPs. Its distance is selected arbitrarily and the precise scale is found later,
Fig. 6. The camera is placed in O = [px, py,0] and world points of the base of the bounding
box are intersections of plane ℘ with rays from O through points A,C (constructed earlier in
the projection plane). Other points are intersections of rays from O through projected points
and rays perpendicular to ℘ passing through points Aw,Bw,Cw,Hw.

0 50 100 150 200 250

l = 129.83
(lc = 4.27 m)

λl = 0.033

λh = 0.034

λw = 0.030

λ = 0.030

min

w = 50.63 
(wc = 1.51 m)

h = 50.83
(hc = 1.74 m)

0 50 100 150 200 250

0 50 100 150 200 250

Figure 6: Calculation of scene scale λ . (left) Median (green bar) for each dimension is found
(l,w,h) in the measured data. (middle) Scales are derived separately based on known median
car size (lc,wc,hc) as λl = lc/l;λw = wc/w;λh = hc/h. The final scale is the minimum
from these three scales. (right) Examples of relative size of the vehicles (yellow) and real
dimensions in meters after scaling by factor λ (red).

Scale factor λ must be found so that the actual metric dimensions are defined as (l,w,h) =
λ (l,w,h). For this purpose, we collect statistical data about sold cars and their dimensions
and form a histogram of their bounding box dimensions. Relative sizes of the cars (l,w,h)
are accumulated into a histogram as well. Histograms confirm the intuitive assumption that
vehicles have very similar width and height (peaks in histograms are more significant) but
they differ in their length. By fitting the statistics of known dimensions and the measured
data from the traffic, for each dimension we obtain a scale (Fig. 6). In an ideal case, all these
scales are equal. However, because different influences of perspective and rounded corners
of the cars (Fig. 4), they are not absolutely the same. For the final scale λ , we choose the
smallest of the scales. The motivation here is that the detected bounding boxes tend to be
smaller (and therefore the scale λ is greater) because cars are not perfectly boxed and from
specific views, some edges of the bounding box did not fit tightly to the car (see Fig. 4).

3 Experimental Evaluation
Our method presented here allows for automatic obtaining camera intrinsic and extrinsic
parameters, including the scene scale on the ground plane. This allows for multiple ap-
plications, previously unavailable without entering human calibration input. This section
evaluates the accuracy relevant to the most straightforward applications: Distance measure-
ments, speed measurements (Sec. 3.1), and analysis of traffic lanes (Sec. 3.2). Section 3.3



DUBSKÁ, SOCHOR, HEROUT: AUTOMATIC TRAFFIC UNDERSTANDING 7

6 m
5.3 m
3.5 m
3 m
1.5 m

Figure 7: (left) Scene with measured ground truth distances used for accuracy evaluation.
(middle) Grid projected to the road (i.e. ground plane). The size of the squares is 3m×3m.
(right) Different view of a scene with detected ground plane with 3m×3m squares and some
of the measured ground truth distances.

shows that the algorithm is capable of running in real time on a low-end processor. Figure 9
shows example images of achievable results.

3.1 Distance & Speed Measurement
Figure 7 (middle) shows a uniform grid with square 3m×3m placed over the ground plane.
We measured several distances on the road plane, Fig. 7 (left), and evaluated error in dis-
tance measurements by our approach. This evaluation is similar to the work of Zhang et al.
[34]; however, we evaluate the absolute dimension in meters, while Zhang et al. evaluate
relative distances supposed to be equal. They report average error of measurement “less then
10%”. Our average error is 1.9% with worst case 5.6%. Table 1 shows results on five videos
observing the same scene from different viewpoints.

When measuring the vehicle speed (Tab. 2), we take into account corner A of the bound-
ing box, which lies directly on the road (this is an arbitrary choice – any point from the box
base can be used). Vehicles in the video are tracked and their velocity is evaluated over the
whole straight part of the track. It is also possible to calculate instant speed of the vehicle
as the distance vehicle passes between subsequent video frames, but it is not perfectly stable
because of inaccuracies in detection of the bounding box and image discretization. It should
be noted that once the camera is calibrated including the scale, for computing the average
speed of a vehicle, its blob segmentation does not need to be very precise, because even
though a part of the vehicle is missing, the speed measurements are still accurate.

The average speed of the vehicle was 75 km
h and therefore 2% error causes±1.5 km

h devia-
tion. A similar evaluation was provided by Dailey [6] who used distribution of car lengths for

1.5 m 3 m 3.5 m 5.3 m 6 m all
v1 2.0/3.3 (29) 2.1/3.9 (7) 4.5/5.5 (3) 3.1/5.6 (5) 2.1/2.4 (3) 2.3 /5.6 (47)
v2 1.6/2.3 (15) 1.3/2.4 (7) 1.3/2.3 (3) 3.3/3.3 (2) 0.7/.17 (3) 1.5/ 3.3 (30)
v3 1.9/3.5 (13) 2.5/3.2 (6) 1.0/1.6 (3) 2.7/3.0 (3) 2.7/3.3 (3) 2.1/ 3.3 (28)
v4 1.0/1.9 (13) 1.8/3.5 (6) 2.3/3.1 (3) 3.7/5.3 (3) 0.9/2.0 (3) 1.6/ 5.3 (28)
v5 2.4/3.6 (15) 1.0/2.5 (6) 0.9/1.7 (3) 1.5/2.5 (3) 1.1/1.7 (3) 1.7/ 3.6 (30)
all 1.8/3.6 (85) 1.7/3.9 (32) 2.0/5.5 (15) 2.8/5.6 (16) 1.5/3.3 (15) 1.9/5.6(163)

Table 1: Percentage error of absolute distance measurements (5 videos). The error is evalu-
ated as |lm− lgt |/lgt ∗ 100%, where lgt is ground truth value and lm is distance measured by
presented algorithm. For each video and each distance we evaluate the average and worst
error. The number in parentheses stands for the number of measurements of the given length.
The bold numbers are average and worst error over all videos and all measurements.
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v1 (5) v2 (3) v3 (5) v4 (5) v5 (5) v6 (5) all (28)
mean 2.39 2.90 1.49 1.65 1.31 2.58 1.99
worst 3.47 3.63 3.18 3.77 2.40 4.26 4.26

Table 2: Percentage error in speed measurement (6 videos). For obtaining the ground truth
values, we drove cars with cruise control and get the speed from GPS. The error is evaluated
as |sm−sgt |/sgt ∗100%, where sgt is speed from GPS and sm is speed calculated by presented
algorithm. The number in parentheses stands for the number of evaluated measurements.

Figure 8: Traffic lane segmentation. (left) Our approach based on 3D bounding boxes. Lanes
are correctly segmented even for side views. (middle) Method using trajectories of the cen-
ters of blobs [16]. (right) Method based on activity map [28].

scale calculation and reached average deviation 6.4 km
h (assuming on-screen vertical motion

and measuring the projected lengths of cars in pixels) or by Grammatikopoulos [13] whose
solution has reported accuracy ±3 km

h but requires manual distance measurements.

3.2 Detection of Traffic Lanes
Having the 3D vehicle bounding boxes, it is also possible to obtain accurate segmentation
of traffic lanes, even from views where cars from one lane overlap ones from another. Ex-
isting methods accumulate trajectories of the blobs [16], the whole blobs, pixels different to
background model [25, 28] or lines on the road [20]. All these methods tend to fail when
the camera views the road from side. In our approach, for each vehicle’s trajectory we ac-
cumulate a filled quad strip with quad vertices Ai,Bi,Ai+1,Bi+1, where i denotes points in
i-th video frame. After accumulation, minima are found on the line perpendicular to road
direction (i.e. line passing through the 2nd VP) and these are set to be lanes’ borders. Accu-
mulation of the above mentioned quad is suitable for finding the borders between the lanes.
In some cases, centers of lanes (locations with dominant vehicle movement) are of interest
– in that case, only trajectories of a center point in the vehicle base (e.g. (Ai +Bi)/2) are
accumulated. Figure 8 shows a comparison of different lane segmentation methods with our
approach based on projection of “correct” bounding boxes.

3.3 Computational Speed
We created an efficient C++ implementation of the proposed algorithm and evaluated the
computational speed on 195 minutes of video (using Intel i3-4330 3.50 GHz processor and
8 GB DDR3 RAM). The measured framerates also include reading and decompression of
videos (considerable load for full-HD videos). It should be noted that optimal framerate for
running the detection/tracking algorithm is around 12.5 FPS, because the cars must move
measurably from one frame to the next one. Therefore, “real-time processing” in this case
means running faster than 12.5 FPS. The results in Tab. 3 show that the system can work in
real time with a safe margin.
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resolution low traffic intensity high traffic intensity
854×480 116.93 FPS 93.79 FPS

1920×1080 24.98 FPS 19.64 FPS
Table 3: Results of processing speed measurement. High traffic: ∼ 40 vehicles per minute;
low traffic: ∼ 3.5 vehicles per minute. It should be noted that the system uses video streams
with∼ 12.5 FPS; and therefore, it can run safely in real time even for full-HD video with the
high traffic intensity.

Figure 9: Examples of achieved results (see supplementary video for further illustration).
(1st row) Different scenes with measured vehicle speed. (2nd row) Cropped out vehicles with
estimated dimensions. (3rd row) Road lanes detected using 3D bounding boxes.

4 Conclusions and Future Work
We presented a method for understanding traffic scenes observed by stable roadside came-
ras. Our method is fully automatic – no user input is required during the whole process.
Experimental results show that the mean error of speed and distance measurement is below
2% (worst 5.6% for distance and 4.3% for speed). This outperforms existing approaches
and provides sufficient accuracy for statistical traffic analysis. Besides measurement, our
approach can facilitate other traffic analysis task, as shown on the case of traffic lane seg-
mentation. The algorithm works in real time with a safe margin. Our measurements show
that the system is able to process 93 FPS of normal video input. The extracted bounding
boxes can be used for various traffic analyses – on the example of traffic lane segmentation
we are showing its benefits for traffic scene understanding.

We are exploring ways how to use the bounding boxes for facilitating various computer
vision tasks. Their knowledge can improve and/or speed up scanning window-based detec-
tion and recognition algorithms. Our bounding boxes can serve as a starting point for fitting
of detailed 3D models to the visual data [23]. We are also working on a multi-camera sys-
tem resistant to mutual occlusions of vehicles – the bounding boxes constructed by multiple
cameras can be cheaply fused into one stream of results.
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