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Abstract

Gradient flows in the Sobolev space H! have been shown to enjoy favorable regu-
larity properties. We propose a generalization of prior approaches for Sobolev active
contour segmentation by changing the notion of distance in the Sobolev space, which is
achieved through treatment of the function and its derivative in Riemannian manifolds.
The resulting generalized Riemannian Sobolev space provides the flexibility of choosing
an appropriate metric, which can be used to design efficient gradient flows. We select this
metric based on the rationale of preconditioning resulting in a significant improvement
of convergence and overall runtime in case of variational level set segmentation.

1 Introduction

The variational level set method [ 18] is still one of the most widely used methods in computer
vision — especially for image segmentation '. This popularity might seem surprising, because
variational level set segmentation is known to be non-convex, e.g., [6]. All the more, because
since the seminal work of Chan et al. [6] a lot of research has been carried out in order to
develop efficient methods for solving convex models for image segmentation, cf. [2, 4, 8].
The non-convexity of the variational level set approach is caused by the usage of con-
tinuous but non-convex approximations of the Heaviside and Dirac distribution for defining
area and boundary integrals. This non-convexity is, however, not always a bane, because
variational level set formulations for localized active contours models [9] or image segmen-
tation in the presence of intensity inhomogeneities [11] make extensive usage of smeared-out
Heaviside and Dirac distributions. As a consequence, it is still of interest to develop efficient
methods for the non-convex variational level set method for image segmentation, which is the
goal of this paper. Thereby, we will consider so-called Sobolev gradient flows, which have
recently been shown to be superior to classical L>-based gradient flows [7, 17]. Inspired by
[19], we extend these approaches by changing the notion of distance in H'. The proposed
generalization consists of endowing H' with a different inner product based on Riemannian
metrics, instead of the Euclidean one, which is used in the standard approaches [17]. As a

(© 2014. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
I'This fact is proven by 579 hits since 2012 obtained by a Google scholar search for the query "’variational level

s

set’ + ’segmentation’" performed on 9th of May 2014.


Citation
Citation
{Zhao, Chan, Merriman, and Osher} 1996

Citation
Citation
{Chan, Glu, and Nikolova} 2004

Citation
Citation
{Chan, Glu, and Nikolova} 2004

Citation
Citation
{Bresson, Esedoglu, Vandergheynst, Thiran, and Osher} 2007

Citation
Citation
{Chambolle and Pock} 2011

Citation
Citation
{Goldstein and Osher} 2009

Citation
Citation
{Lankton and Tannenbaum} 2008

Citation
Citation
{Li, Huang, Ding, Gatenby, Metaxas, and Gore} 2011

Citation
Citation
{Charpiat, Maurel, Pons, Keriven, and Faugerás} 2007

Citation
Citation
{Sundaramoorthi, Yezzi, and Mennucci} 2007

Citation
Citation
{Zikic, Baust, Kamen, and Navab} 2011

Citation
Citation
{Sundaramoorthi, Yezzi, and Mennucci} 2007


2 BAUST, ZIKIC, NAVAB: RIEMANNIAN SOBOLEV SPACES

<@v w)Hl = <@ lr““”>l,2 +a <VU‘ Vli">”

(o, UL‘>1\1 = (o, '4““">MU +(Vo, v@‘/)>Ml

(a) (®) ()

Figure 1: The proposed generalization (a) results in efficient Riemannian Sobolev flows,
which provide accurate results (b), however with significantly improved convergence and
overall runtime (c). Every 5th iteration is marked with a +.

consequence of this choice, the minimizing gradient flow in the Riemannian Sobolev space
exhibits a significantly improved convergence, compared to gradient flow in H'. This ad-
vantage in convergence translates directly to a notable improvement of the overall runtime,
cf. Fig. | and Fig. 2.

2 Level Set Segmentation in Riemannian Sobolev Spaces

We start in Sec. 2.1 by describing gradient flows in a general Hilbert spaces. In Sec. 2.2 we
discuss possible choices for the Hilbert space and the resulting gradient descent flows. After
that, we generalize previous considerations by introducing Riemannian Sobolev spaces in
Sec. 2.3. Finally, we use this generalization to increase the convergence rate of the resulting
flow in Sec. 2.4.

2.1 Gradient Flows in Hilbert Spaces

In this work we will consider the segmentation problem in a variational manner, which means
that the level set function ¢ : Q@ C R? — R is (a local) minimizer of the problem

in€(9), 1
min £(9) )
where £ is the energy characterizing the optimal configuration of ¢. H = H(Q) is a suitable

Hilbert space endowed with the inner product (-, )3 which induces a norm on H by

1

19112 = (v, w3 @)
A gradient flow in H results in
= _VHE(‘P)» (3)
where Vi E(9) € H represents the first variation of € in A as follows:
LE@hw)| = (@) v @
h=0

Eq. (4) reveals that the choice of H plays a crucial role for the definition of the actual
gradient. It is important to note that the choice of (-, )4, determines , because we have that

H={¢: 9l <} )
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Figure 2: Gradient flows for the classical Sobolev space approach (SF) and the proposed
Riemannian Sobolev space flow (RSF). We visualize the norms of the updates TVeH'! and
TVg Hyy during iterations of the experiment from Fig. 1 (colorbar range is [0,1]). The im-
proved convergence of the proposed approach results from the structure of the updates, with
more equally distributed magnitudes, compared to the classical approach.

2.2 Gradient Flow in the Sobolev Space H'!

For many years # = L? has been the only choice considered for #. The gradient flow in L?
is exposed to the risk of getting stuck in undesired local minima. Moreover, the numerical
treatment of L? gradient requires regularization methods such as re-initialization [16] or
signed distance regularization [10] for maintaining numerical stability.

Due to the drawbacks associated to L? flows Sundaramoorthi et al. [17] suggested to
employ the Sobolev space H'! which is based on the inner product

<¢7V’>Hl = <¢ﬂW>L2+a<V¢7VW>L27 (6)

where o > 0 and

0¥z = [ 9w dx. @

The choice H = H! is justified by the fact that H' contains smoother functions than L? [12]
- namely those that have also derivatives with bounded L?-norm - and thus an H' gradient
flow is less sensitive to undesired local minima.

In order to implement the H' gradient flow, it is helpful represent Vy;1 € in terms of the
L? gradient Vi2&. As (4) is valid for any choice of H we obtain

d
%5(‘15 +hoy)| = (VRE(@),¥)2 = (Vip€(9), W) ®)
h=0
Using the definition of (-,-);1 and assuming Neumann boundary conditions we can integrate
by parts:

(Vin€(9), W) = (I = @A)V E(9), W2 = (Vp2E(9), Y2 ©)
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Finally, applying the fundamental lemma of the calculus of variations yields
VinE(9) = Sy ' ViRE(9), (10)
where
Soa=1—aA 11)

is called Sobolev operator [15]. The Sobolev operator allows us now to identify the H'!
gradient flow as

09 = —S4 ' Vi2E(9). (12)

Thereby S, ! can be considered as a smoothing operator which ensures that ¢ stays in H'
during the evolution.

2.3 Gradient Flow in the Riemannian Sobolev Space H),

In Sec. 2.2 we have seen that the smoothing operator S&l is an important part of the H' gra-
dient flow. In this subsection we will show that there are more possible smoothing operators
than just Sg ' which still yield an H' gradient flow. Consider the inner product

= <¢7MOW>L2+<V¢7M1VW>L27 (14
where My € R and M, € R?*4 are two Riemannian metric tensors, and for My = 1 and
M, = a we obtain the H' scalar product in (6). As My and M, are Riemannian, which means

that they are symmetric and positive definite, there exist two constants 0 < ¢,C < oo such that
|-l 71 and |||, are equivalent norms:

1

19l <M1l = (@, @i < C- [l - (15)

This means that the Riemannian Sobolev space Hy = {¢ : ||¢||,, < e} contains the same
functions as H'!, but the notion of distance is different.

Now we want to study the Hy, gradient flow and therefore we represent Vi€ via V2 €.
Repeating the considerations of Sec. 2.2 we obtain

(VME (D), Wim = (Vi2E(9), ¥)p2 (16)
and integration by parts yields finally
(Mo — div(My V) ViE(9), W);2 = (Vi2E(9). W)y2. a7
Thus VyE(9) = (Mo —div(M;V))~'V,2£(¢) and the Hy; gradient flow reads
99 = =Sy Vi2E(9), (18)

where
Sy =My —div(M V). (19)

In the next section we will choose My and M, such that the gradient flow (18) converges
significantly faster than the standard H' flow in (12).
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(a) well-conditioned problem (b) ill-conditioned problem

Figure 3: 2D Illustration of Well- and Ill-conditioned Problems: The convergence rate of
a well-conditioned problem (a) does not depend on the initial position or the particular di-
mension — in contrast to the one of an ill-conditioned problem (b), for which the convergence
rate can be quite different for individual problem dimensions.

2.4 Metric Selection Based on the Preconditioning Rationale

We have seen in the last subsection that replacing the standard H' inner product by (-, )y
still yields a smooth gradient flow, but with a different notion of distance depending on the
choice of My and M. Now we will use the freedom of choosing these metric tensors to speed
up the gradient flow. We will select the metric tensors based on the idea of pre-conditioning.

Pre-conditioning is a standard technique for improvement of convergence properties of
solvers for linear systems [13]. To this end, consider the second-order Taylor approximation
of a function f in an arbitrary Hilbert space H

2

fx+€h) = f(x)+&(h, Var f(x))2 + &

5 (h Hyy ()R} + O(e7) (20)

For a critical point x’ with V f(x') =0, the first order term in (20) disappears and H domi-
nantly describes the shape of f about x’, so that the condition of H has a direct impact on
the convergence of gradient-based methods, see also [15]. The idea of pre-conditioning is to
multiply (20) by a certain pre-conditioner P, which approximates H~! since this improves
the condition of the resulting problem. It is in general important that P can be efficiently
computed, so that the improvements in convergence can be translated into effective runtime.

One major observation is that for ill-conditioned problems, the convergence rates can
vary significantly for the individual dimensions of the problem space, cf. Fig. 3. Inspecting
the level set function, as well as the corresponding gradient for the standard H' flow, we
see that the magnitude of the gradient at single spatial positions vary significantly, cf. Fig.
2. As the single spatial positions correspond to the dimensions of our problem, this results
in varying convergence rates for each pixel. We thus conclude, based on the idea of pre-
conditioning, that the adaptation of the magnitude of the gradient at the single spatial points
should provide an improvement of convergence properties. To derive a Riemannian metric
tensor based on the above argument, we start with the analysis of the level set function. Image
segmentation can be considered as a binary decision for every pixel, which is reflected by
the assumption

>0, x & foreground,
o ( )—{ £ 1)

N <0, x & background.

Thus we can assume that ¢ is a basin-shaped function such as (G * xs)(x), where G is a
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X5 ¢ =Gx*xs

Figure 4: Construction of a basin-shaped level set function ¢.

Gaussian smoothing kernel and

Xs(x) = {

where 0 > 0 is the basin depth as depicted in Fig. 4. In order to choose My we first consider
the L? gradient which is the core component of the H! as well as the Hy; gradient flow (cf.
(12) and (18)). Thus, the ? gradient is a function of x, I, ¢, and V§:

Vi2E(¢(x)) = F(x,1(x),9(x), Vo (x)). (23)

This formula again illustrates why the L* gradient flow is very sensitive to local minima,
because F depends on the local behavior of I at a single point x. As S;! smooths the L
gradient, the H 1 gradient flow is less sensitive to this local behavior. However, there is still
a problem associated to the L? and the H' gradient flow. By taking a closer look at the first
two rows of Fig. 2, we can observe that the local magnitude of the H' depends significantly
on the position x resulting in a space-dependent convergence rate, which is an indication for
an ill-conditioned problem as illustrated in Fig. 3. The reversion of this argument leads us
to the idea that a pointwise normalization such as

1
Vi2E(9(x))] /6

could provide us with a uniform update size of § resulting in a well-conditioned problem.
Unfortunately, a simple rescaling of V;2£(¢) would not lead to a smooth gradient flow. Thus
we propose to incorporate this normalization into the operator Sy, by defining

Mo (x) = |V2€(0(x))[ /8 + 7, (25)

where ¥ > 0 is a small constant to ensure the positivity of M. As the inverse of Sy, is applied
to V;2E(9) in (18), My also gets inverted, resulting in a normalization of V;2£(¢). Further,
by choosing M| = o > 0, we maintain the smoothing behavior of S jgl which guarantees that
we stay in H'! during the evolution. Finally, Sy, has the form

s - (00

where § = 1 and y = 0.005 have proved to be a good choice in all our experiments.

, x € foreground,

s 22)
2

[SISY

x € background,

Vi2€(9(x)) 24)

+ y) — aA, (26)

3 Experiments

We performed several experiments on images of the Weizmann database [1], because it pro-
vides also manual ground truth labelings. Before we discuss the results of our experiments
in Sec. 3.3, we briefly describe the employed variational formulation in Sec. 3.1 and give all
important details on the implementation in Sec. 3.2.
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3.1 Variational Formulation

Denoting the image with I : Q@ C R? — R we consider the following energy to be minimized:

£(9) =269(9) + 1P (9), 27
where
0)= [ 86)1volgar, 28)
is the geodesic active contour model [3] employing an edge indicator function such as
1
X)=——""79/—5 29
O = v @

and the piecewise constant Chan-Vese model [5]:

0)= | H(=0)(1 =)+ H($)(1 - )? dv. (30)

Thereby L;, 1, € R denote the mean intensity values in and outside the contour and Ag, Ap €
R are the weights for each data term. In all our experiments we set Ap = 1 and Ag = 0.3.
The resulting L? gradient then reads

Vin£(0) = 80) [doaiv (00 ) +an (- = -?)| . )

3.2 Implementation

We use a forward Euler time discretization for the H' gradient flow in (12)

9" =9 18, 'V2E(0") (32)
as well as the Hys gradient flow (18)

9" = — 15, V2E(¢"). (33)

For the inversion of Sy and Sy we need to solve a sparse equation system. However, S, can
also be inverted by computing the impulse response of its inverse on a small domain of size
2[4\/o] x 2[4+y/o] pixels and using it as a convolution mask. In general this decreases the
runtime. In order to allow for a fair choice of the update size in every iteration step, we chose
7 =||V,2€||2". By employing this time step selection we ensure that the convergence rate
for each method only depends on the structure of the update steps and not their size. This
can be observed in Fig. 2.

In all our experiments we have normalized the image intensities such that I(x) € [0, 1].
The operators V and div in (31) have been approximated with forward and backward finite
differences, respectively. Further, it is useful to replace VI in (29) with VG xI/c, where
o = 0.01 and G is a truncated Gaussian kernel (window size 3 and standard deviation 0.5).
For approximating 6(¢) in (31) we employ its smeared-out version as suggested by Osher
and Fedkiw in [14]:

T

i(1Jrcos(?)) (34)

5e(¢) = e

for |¢| < e,where € = 1.5, and 6;(¢) = 0 otherwise.


Citation
Citation
{Caselles, Kimmel, and Sapiro} 1997

Citation
Citation
{Chan and Vese} 2001

Citation
Citation
{Osher and Fedkiw} 2003


8 BAUST, ZIKIC, NAVAB: RIEMANNIAN SOBOLEV SPACES

K = £

(a) original image (b) manual labeling (c) result RSF
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(d) original image (e) manual labeling (f) result RSF
Figure 5: Test Images: First row: The chopper image (a) segmented with the Riemannian
Sobolev flow (RSF) (b). The manual ground truth obtained is given in (c). Second row: The
moth image (d) segmented with the Riemannian Sobolev flow (RSF) (e). The manual ground

truth obtained is given in (f). Images and the manual labelings are obtained from [1].

3.3 Discussion

We performed a large number of experiments on images of the Weizmann segmentation
database [1], which are depicted in Fig. 5. For all experiments we used identical values for
A and Ap. Our experiments reveal that the Riemannian Sobolev Flow (RSF) outperforms
the the standard Sobolev flow (SF) as well as the standard Sobolev flow implemented with
via convolutions (SFC) concerning both convergence rate and runtime. Moreover, Fig. 6
reveals that the SFC flow, although much faster then the SF flow, is prone to get stuck in
local minima. This behavior is not surprising, since a convolution mask with finite size is
cannot to fully describe the global behavior of an elliptic differential operator such as Sy .
Another benefit of our method is that its behavior is far less dependent on the choice of
a. This allows to choose the parameter & depending on the application in question without
the necessity to take numerical concerns into account. As we chose the step size T as well
as the parameter 7y in (26) automatically our method requires no additional parameter for
minimizing a given energy &.

4 Conclusion

We have shown that Riemannian Sobolev spaces are a flexible and powerful tool to influence
the properties of the resulting gradient flow for variational image segmentation. Motivated
by an analysis of standard Sobolev flows, we propose to select the Riemannian metric tensors
based on the idea of pre-conditioning, cf. also [19]. This results in a fast and simple to im-
plement method, which is shown to yield a significant improvement in the convergence rate,
while at the same time preserving the smoothness of the level set function. The improvement
in convergence translates into effectively much shorter runtimes, which is of importance for
practical applications. Furthermore, the proposed method exhibits improved performance,
almost independently on the choice of the regularity parameter ¢, which allows o to be
chosen based on the application requirements and without any numerical considerations.
Regarding possible applications of the proposed technique one should, however, consider
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the following aspects:

e The proposed metric is designed for the usage of basin-shaped level set functions. In
case of signed-distance functions, one will have to alter the choice of M.

e It should be noted that our choice of the the smeared-out Dirac distribution is different
from the one used by Chan and Vese in [5] making the segmentation problem a truly
non-convex one — even if the mean values inside and outside the contour are known,
cf. [6].

Future work might include a more extensive the evaluation of the proposed method as well
as an application of the proposed method to localized models for image segmentation, e.g.
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(a) Convergence: SF (b) Convergence: SFC (c) Convergence: RSF
(d) Runtime: SF (e) Runtime: SFC (f) Runtime: RSF

Figure 6: Moth example continued: We segmented the moth image in Fig. 5(d) using the
H' Sobolev Flow (SF), the H' Sobolev flow implemented with convolutions (SFC), and the
Riemannian Sobolev flow (RSF). The figures in the first row show the evolution of the L?
error of the segmentation (w.r.t. to Fig. 5(f)) with respect to iterations, for different values of
a. The second row plots the evolution of the L? error, with respect the runtime. In addition
to the results depicted in Fig. 7 we observe that the SFC flow is prone to get stuck in local
minima as indicated by the bright stripes in (b) and (e).
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