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Abstract

In video segmentation, disambiguating appearance cues by grouping similar motions
or dynamics is potentially powerful, though non-trivial. Dynamic changes of appearance
can occur from rigid or non-rigid motion, as well as complex dynamic textures. While
the former are easily captured by optical flow, phenomena such as a dissipating cloud
of smoke, or flickering reflections on water, do not satisfy the assumption of brightness
constancy, or cannot be modelled with rigid displacements in the image. To tackle this
problem, we propose a robust representation of image dynamics as histograms of mo-
tion energy (HoME) obtained from convolutions of the video with spatiotemporal filters.
They capture a wide range of dynamics and handle problems previously studied sepa-
rately (motion and dynamic texture segmentation). They thus offer a potential solution
for a new class of problems that contain these effects in the same scene. Our represen-
tation of image dynamics is integrated in a graph-based segmentation framework and
combined with colour histograms to represent the appearance of regions. In the case of
translating and occluding segments, the proposed features additionally serve to charac-
terize the motion of the boundary between pairs of segments, to identify the occluder and
inferring a local depth ordering. The resulting segmentation method is completely model-
free and unsupervised, and achieves state-of-the-art results on the SynthDB dataset for
dynamic texture segmentation, on the MIT dataset for motion segmentation, and reason-
able performance on the CMU dataset for occlusion boundaries.

1 Introduction

We are interested in the use of image motion and dynamics to aid the segmentation of videos,
in addition to appearance cues such as colour and texture. For example, two adjacent regions
of different colours, but moving together in the image, are likely to belong to a same object.
Conversely, two objects may exhibit a similar texture but be moving differently. Though
indistinguishable in individual frames, image dynamics then allow for separating them into
different segments. Besides simple motion, another class of phenomena, called dynamic
textures, are characterized by complex variations of appearance. Examples include a swirling
cloud of smoke, reflections on water, or swaying vegetation in outdoor scenes. In order to
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Figure 1: (Left) We represent dynamics in regions of the video with histograms of mo-
tion energies (HoME) measured at various space-time orientations. They are combined with
colour histograms in a graph-based segmentation framework. Post segmentation, HoMEs
are additionally used to compare the motion of boundaries with their adjacent segments’.
We thereby identify the occluders and infer a local depth ordering. (Right) The peak mo-
tion energy MEn̂i at each pixel captures local variations of appearance; although comparable
to a noisier version of optical flow, the full set of measurements, of higher dimension, of-
fers a much richer representation of image dynamics (hue represents orientation, saturation
represents velocity/magnitude.

reliably segment such patterns, image dynamics are even more crucial, though they cannot
be easily captured with traditional methods based on optical flow.

In this paper, we present a method for extracting and representing image dynamics using
3D, spatiotemporal filters applied to the video volume. The response of these filters is turned
into histograms of spatiotemporally oriented energies, accumulated across regions, and used
within an existing video segmentation method [13]. Most interestingly, the same technique
applies to dynamics arising from simple motions and complex dynamic textures alike. This
strongly contrasts with existing work that focuses on either of these two classes of problems,
or those based on optical flow and parametric motion models. Furthermore, in the case of
rigidly moving objects, we use our representation of motion to assign each boundary to either
of its two adjacent segments. The most similar is likely to be occluding the other, which
allows us to infer a local depth ordering. The procedure proved very effective in practice,
despite relying entirely on low-level image features, without assuming any particular motion
model, with the advantage of operating completely unsupervised, i.e. without prior training.

In summary, our contributions consist of (i) a representation of image dynamics as his-
tograms of spatiotemporally oriented energies, (ii) its application to the segmentation of
videos, by adapting an existing method to identify segments of coherent dynamics and ap-
pearance, (iii) an additional, post-segmentation procedure to assign each resulting boundary
to either of its adjacent segments, inferring a local depth ordering, and (iv) an extensive eval-
uation on a range of tasks, namely dynamic texture segmentation, motion layer estimation,
and occlusion boundary detection. We demonstrate the wide applicability of the approach to
problems previously studied separately, with results superior to a number of existing, task-
specific methods.

2 Related work

Video segmentation Video segmentation has been actively studied; see e.g. [28] for a
review. A number of methods extend image segmentation algorithms, using only colour and
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texture to group perceptually homogeneous regions. Motion was also used as an additional
feature (e.g. [5, 13] among many others) mostly with histograms of optical flow. In [13],
the authors additionally use of the optical flow to define the connectivity (and thus possible
groupings) between nearby voxels. In general, optical flow is limited by assumptions of e.g.
brightness constancy or rigid motion, and is thus limited to image dynamics corresponding to
actual displacements in the image. Patterns such as reflections on water or a dissipating cloud
of smoke violate these assumptions. Moreover, despite modern advances, the extraction
of optical flow remains a demanding process that may be unsatisfactory, conceptually and
practically. In contrast, we use low-level image features obtained from simple filtering of the
video, within a state-of-the-art segmentation framework [13].

Extraction of image dynamics Besides optical flow, image dynamics have been used more
directly within appearance-based methods. Works on dynamic textures (such as the water or
smoke examples mentioned above) used generative models, e.g. linear dynamical systems
[6, 10]. Iterative fitting of such models with expectation-maximization was used to segment
dynamic textures [2, 4], but proved computationally expensive, requiring manually defined
initial segmentations. Good results were recently reported on dynamic texture segmenta-
tion [5, 14] using extensions of (static) texture descriptors, but with limited contributions
to the study of dynamics. Decompositions of image dynamics in the frequency domain
[6, 11], showed potential for separating motions occurring at different frequencies within a
scene. Such “band-pass” decompositions are comparable to our use of spatiotemporal filters.
Steerable filters [12] were proposed early as a way to extract optical flow [16], though the
responses to a bank of such oriented filters actually provide much richer information than the
optical flow. Indeed, two key advantages are, on the one hand, to allow capturing multiple
oriented structures at any space-time location, and, on the other hand, to handle both motion
(e.g. translating objects) and non-motion (e.g. flickering effects) dynamics within a unified
framework. Derpanis et al. looked extensively into their use for recognition of dynamic tex-
tures and scenes [9], and inspired our work. An early attempt at grouping these features with
mean-shift was proposed in [8] but with limited results.

Motion layers The segmentation of motion was examined mostly using optical flow and
parametric (e.g. affine) motion models, either in an independent step (e.g. [1] among many
others) or jointly with the extraction of optical flow [23, 24]. The end goal however re-
mains the estimation of displacements in the image, which only correspond to a limited
range of situations. A recurring challenge is in determining the optimal number of layers;
[24] proved computationally very expensive for this reason. In comparison, our hierarchical
segmentation produces several levels of segmentation, justified by different possible levels
of interpretation of the scene.

Occlusion boundaries Identifying occlusion boundaries in videos was originally brought
up by [18], noting that an occlusion boundary moves together with the occluding surface
[18]. A number of works focused on the learning of classifiers to recognize this behaviour
[17, 22], using static and flow-based features [15, 25, 26], and initial candidates from a static
edge detector. Sundberg et al. [25] showed that motion compared between local neighbour-
hoods could separate layers and infer depth ordering. These results motivated our approach,
which assigns boundaries to either of the adjacent segments. Interestingly, the candidate
boundaries of [21, 22] result from the comparison of intensity histograms between halves
of spatiotemporal (3D) patches. Although formulated very differently, this strongly resem-
bles our histogram-based segmentation. In comparison to the above methods, we perform
different steps (from candidate boundaries to global consistency) in a more unified manner.
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While other methods report results on a single (middle) frame of short video sequences, we
produce segmentations for entire videos. Finally, we do not rely on hard-coded parametric
motion models or require any training.

3 Spatiotemporally oriented energies to capture dynamics
We first present a filter-based approach to extract, from a video, motion and variations of
appearance. We will then show how histograms of such features integrate within an existing
segmentation method, combined with static appearance cues (colour histograms).

Our approach is based on earlier work on steerable spatiotemporal filters [7, 12]. Sim-
ilarly to 2D filters used to identify 2D structure (e.g. edges) in images, 3D filters can re-
veal structure in the video volume. Considering a Gaussian-like function of three variables
G(x,y, t) = e−(x

2+y2+t2), we use the second order derivatives G2
θ̂
(x,y, t) = ∂ 2G

∂ θ̂ 2 and their
Hilbert transforms H2

θ̂
(x,y, t), steered to a spatiotemporal orientation of unit vector θ̂ (the

symmetry axis of the G2 filter). We denote the video volume of stacked frames V , and the
energy response for a given θ̂ is then measured by

E
θ̂
(x,y, t) = (G2

θ̂
∗V)2 +(H2

θ̂
∗V)2 , (1)

where ∗ denotes the convolution. Note that the Hilbert transform corresponds to a phase
shift of π/2, and the quadrature pair of filters G2/H2 allows for extracting spectral strength
independent of the phase [12]. In the spatiotemporal frequency domain, a pattern moving in
the video with a certain direction (e.g. rightwards) and velocity (e.g. 2 px/frame) corresponds
to a plane passing through the origin [12]. Our representation of image dynamics is based on
measurements of energy along a number of those planes. Parameterizing a plane by its unit
normal n̂ in the spatiotemporal frequency domain (ωx,ωy,ωt), the motion energy ME along
the plane is given by

MEn̂(x,y, t) =
N

∑
i=0

E
θ̂i
(x,y, t) , (2)

with N = 2 the order of the derivative of the filter, and θ̂i filter orientations whose response
lie in the plane n̂ (see [8] for details). These motion energies are thus obtained by summing
responses of filters consistent with the orientation of each plane. The motivation is to obtain
a representation of dynamics only, and this effectively marginalizes the filter responses over
appearance. Note that the resulting measurements MEn̂ can be compared to the extraction
of optical flow, since they each correspond to a specific orientation and velocity (see Fig. 1,
right). In comparison, the responses of individual filters (Eq. 1) only measured orthogonal
motion with respect to the local gradient.

The above formulation suffers from two drawbacks. Firstly, due to the broad tuning of the
G2 and H2 filters, energy responses (Eq. 1) arise in a range of orientations around their peak
tunings. The effect propagates to the aggregated energy measurements (Eq. 2), whose values
are heavily correlated across neighbouring planes (see Fig. 2). Secondly, the response to any
particular filter depends on image contrast, and one cannot thus directly determine whether
a high response is caused by a definite 3D structure matching the filter orientation or a faint
match in a region of high contrast. We address these two issues by a non-linear scaling of
MEn̂, first normalizing w.r.t. the strongest local energy measure, then as to emphasize the
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Ori. Velocity

Figure 2: Actual HoMEs of real sequences (Eq. 2), visualized as 2D histograms, of image
(spatial) orientations and (spatiotemporal) velocities (lighter colours represent higher veloc-
ities; a limited set of velocities is represented for compactness). (Left) The background is
mostly static with a uniform range orientations, whereas the moving car produces a single
mode in the histogram. (Right) The sea waves exhibit multiple motion modes; the upwards
motion of the flame is more simply defined.

actual peak energies at each voxel:

ME ′n̂(x,y, t) = MEn̂(x,y, t) / max
n̂

MEn̂(x,y, t) (3)

ME ′′n̂ (x,y, t) = eα(ME ′n̂(x,y,t)−1) . (4)

In practice, we use a high parameter α = 1000, typically. The feature vector of each pixel is
finally the set of measurements E ′′n̂i

for a number of vectors n̂i (see Sect. 6), considered as a
histogram and therefore normalized as to sum to 1.

4 Segmentation combining appearance and dynamics
We integrate our representation of image dynamics within the hierarchical, graph-based
video segmentation method of [13], briefly reviewed below. The video volume is repre-
sented as a graph, where the nodes N` = {pi}i initially correspond, at level ` = 0, to all
voxels of the video. The edges E` between nodes initially correspond to a 26-connectivty,
and are assigned a weight proportional to the similarity between nodes. To produce each
level of segmentation, an agglomerative procedure iteratively removes edges from the graph,
merging nodes into segments of larger and larger size, until some criterion is satisfied. The
resulting graph at level ` is used as the starting point for the level `+1. Although the algo-
rithm performs local decisions by considering, at each level, the edges in order of increasing
weight, it ensures that segments can equally correspond to homogeneous (e.g. textureless)
regions or to regions exhibiting coherent but large variations.

We denote the set of voxels of V assigned to a node (segment) p with P(p). The appear-
ance of p is characterized by the histogram of colours Hcol

p occuring within P(p) and by our
histograms of motion energy HHoME

p . As opposed to colour histograms, note that the HoME
of single voxels (at level 0) already represent a distribution, with multiple entries. An edge
between nodes p and q is assigned a low weight whenever colour and dynamics are both
similar:

weight(p,q) = 1−
(

1−d(Hcol
p ,Hcol

q )
)(

1−d(HHoME
p ,HHoME

q )
)

, (5)

with d(·, ·) the Chi squared distance. One could introduce here a different weighting for
colour and dynamics, as most authors do (e.g. [25]), and optimize results on a particular
dataset. A generally optimal choice is however not obvious, and we chose to keep both
features equally important.
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5 Inferring occlusion boundaries and depth order
In scenes containing mostly rigid objects, once they have been segmented into different
regions, we want to reason about their depth ordering. We use the heuristic that an occlusion
boundary then moves together with the occluding surface [18]. This allows reasoning beyond
the apparent adjacency of the segments in the video. Formally, a boundary between two
segments p and q correspond to the voxels of the video

B(p,q) = dilate3×3
(
P(p)

)
∩ dilate3×3

(
P(q)

)
, (6)

i.e. the intersection of the voxel volumes of both nodes, each dilated with a 3×3 cube. This
corresponds to a 2-voxel wide boundary wherever the nodes are adjacent in the video volume.
We then characterize the motion of a boundary by accumulating HoMEs over its voxels.
Therefore, the boundary motion, denoted HHoME

pq , is easily compared with the motion within
the adjacent segments, and the boundary is assigned to the most similar of the two:

boundaryAssignment(p,q) = argmin
p′={p,q}

d(HHoME
p′ ,HHoME

pq ) . (7)

This assignment is done on an individual basis, one pair of segments at a time, giving a local
depth ordering of these segments (similarly as in [25]). Some global consistency is however
ensured thanks to the prior segmentation, which operates on the whole video. Inferring
such information at different levels of the segmentation hierarchy is justified by the different
possible levels of interpretation of the scene.

Finally, in addition to the multi-level, hierarchical segmentation, we aggregate results of
all levels into a single boundary map (Fig. 6). For any frame f , this map includes all bound-
aries between segments at the lowest level of the hierarchy (remember that the boundaries of
higher levels are a subset of them) and assign, to each of them, the following strength:

boundaryStrength(p,q) = maxLevel+
1

maxLevel

maxLevel

∑
`=1

weight
(

parent`(p), parent`(q)
)

with maxLevel = max ` s.t. B(p,q)⊂ B
(

parent`(p),parent`(q)
)
, (8)

where parent`(p) gives, for p, the node p′ of a higher level such that P(p) ⊂ P(p′). The
first term of Eq. 8 correspond to the highest level of the segmentation in which this boundary
appears, and dominates the overall strength. The second term, comprised in [0,1[, is the
average importance of the boundary over all levels of the hierarchy. It provides a finer
estimate of the strength. For example, the boundary between the two segments remaining at
the top level of the hierarchy will receive a high, but non-uniform strength.

6 Experimental evaluation
We evaluated our approach on a number of tasks: dynamic texture segmentation, motion
segmentation, and identification of occlusion boundaries. These have previously been ad-
dressed with distinct task-specific methods, and no single dataset allows a comprehensive
quantitative evaluation. We thus consider different benchmark datasets in turn. Remarkably,
we obtained superior or competitive results on all datasets with a single method and identical
parameters. We use G2 and H2 filters of scale σ=1px. We measure motion energies along
planes n̂i corresponding to 16 spatial orientations and 10 speeds between 0 and 3px/frame, in
addition to flicker (infinite velocity). The resulting HoMEs have a dimension of 161. Colour
histograms consist of 3 separate 10-bin histograms using Lab coordinates. As in [13], the
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Method K=2 K=3 K=4
No init., no training Proposed, colour + HoME, static segments 93.6 89.7 88.5

Proposed, colour + HoME, moving segments 86.3 79.5 74.4
Proposed, colour only, moving segments 71.1 60.8 61.2
GPCA [20] 54.8 55.4 54.9

With manual init. LDT [2] 94.4 89.4 91.6
DTM (IC) [3] 91.5 85.3 86.8
DTM (CS) [3] 91.5 82.5 83.5

With training (LBP/WLD)TOP [5] 92.4 88.4 85.5

SynthDB 3-002

SynthDB 3-010

SynthDB 3-023

Input DTM [3] LDT [2] Col. + HoME, static

Figure 3: (Above) Segmentation of dynamic textures on the SynthDB dataset with K tex-
tures (Rand index in percent). (Below) Sample segmentations of textures of very similar
appearance; image dynamics are crucial to distinguish them.

Chen et al. [5]
“Split-and-merge” algorithm causes square
boundaries at the base of the flame.

Proposed, colour + HoME
Note the tighter and more precise
boundaries.

Figure 4: Segmentation of the ocean-fire sequence (frames 4, 12, 27, 47).

segmentation at level `=0 is bootstrapped with edge weights set to Lab space distances be-
tween voxels (to avoid artefacts from histogram quantization) and segments of minimum
area of 20px (to ensure stable histograms). Input videos are filtered with a 2D Gaussian of
size σ = 0.5px to remove noise and compression artefacts. Our mixed Matlab/C implemen-
tation processed most of the videos of this evaluation in less than a minute on a standard
laptop. The limitation is generally in the memory required to store the HoMEs of every
voxel at level 0. We compare the use, as features, of colour histograms alone, in conjunction
with HoMEs, and with histograms of optical flow (extracted with [27] and quantized in 2D
histograms of 16 orientations and 10 magnitudes, similar to the HoMEs).
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Method Avg. Car Car2 Car3 Dog Phone Table Toy Hand Person
Proposed, colour + HoME 83.2 90.0 64.5 79.6 95.9 56.1 93.7 90.8 94.5 83.4
Proposed, HoME only 82.2 88.4 63.7 83.0 95.7 57.0 90.9 87.0 87.5 86.8
Proposed, colour + flow [27] 79.9 81.1 53.3 89.8 93.5 66.5 89.5 87.1 62.9 95.6
Proposed, colour only 73.3 86.4 64.4 72.1 51.6 55.8 86.7 89.6 98.9 54.0
Layers++ [23] 77.5 61.2 51.2 77.8 96.4 56.7 90.9 83.2 81.4 98.6
nLayers [24] 82.3 83.6 58.9 76.6 97.4 57.8 97.9 85.8 88.1 94.4

Input Ground truth Layers++ [23] nLayers [24] Colour only Colour + HoME

Figure 5: Motion segmentation on the MIT human-labeled dataset (Rand index in percent).

6.1 Dynamic texture segmentation

We segment dynamic textures with the SynthDB dataset [3], featuring composites of 2, 3, or
4 patches of real footage of fire, water, smoke, vegetation, etc. We generally perform better
than existing methods (Fig. 3), which require a manual coarse initialization [2, 3] or a training
stage [5] to learn an optimal distance function between features. We obtained best results
by enforcing static segments (as in [2, 3]), forcing the accumulation of histograms over the
frames of the video. We also show qualitative results on a classical sequence featuring fire
over water (see Fig. 4); the complex moving boundaries of the flame are precisely estimated
(video also provided as supplementary material).

6.2 Motion segmentation

We segment rigid motions with the MIT human-labeled dataset [23]. It features objects with
intrinsic motion (e.g. car, dog) and parallax-induced motions at different depths. We cor-
rectly segment most objects with an impressive improvement over colour-only segmentation
(see Fig. 5 and supplementary material). Quantitatively, we slightly surpass state-of-the-
art methods [23, 24], which perform segmentation to help the extraction of motion (optical
flow). Note that segmentation is our end goal, and we thus proceed the opposite way.
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6.3 Occlusion boundaries

We detect object boundaries (Sect. 5, Eq. 8) on the CMU dataset [22]. Compared to motion
segmentation, these boundaries do not have to define closed segments. Our assumption is,
however, that our closed segments enforce some useful global consistency. We indeed obtain
good performance, with unquestionable improvement over colour-based segmentations (see
Fig. 6 and supplementary material). The segmentation is also improved over the “HoMEs
only” segmentation, which indicates the importance of (static) appearance cues. Overall, we
do not reach the performance of learning-based methods [15, 22, 25]. Since the baseline
flow-based segmentation performs similarly, this does not point a limitation of the proposed
features, but rather the suitability of learning-based methods on this dataset. The inevitable
bias of human annotations favors a supervised training to combine static and motion cues.
We observed however some failure cases due to the inability of HoMEs to capture motion
in textureless regions. The above methods rely on optical flow and benefit from the usual
regularization for this well-known aperture problem.

We finally infer the depth ordering of adjacent segments (Sect. 5, Eq. 7). The assign-
ment for a boundary is made at the highest level it appears, and we measure agreement with
ground truth pixel-wise over correct boundaries (as e.g. in [19]). We observed that the suc-
cess of the assignment strongly depends on the quality of the segments identified in the first
place. Correctly segmented scenes thus gave excellent results, and the overall performance
(77%) is above the chance level of 50% (Fig. 6). We do not reach the state of the art [19, 25],
which use parametric motion models, well suited to the rigid motions present in this dataset.
A future direction could be the fitting of such models to our motion energies, though this
may limit the generality of the current model-free approach.

7 Conclusions

We studied the use of image dynamics as a cue to help segment videos into coherent, phys-
ically meaningful regions. We extracted spatiotemporally oriented energies from the re-
sponses to a bank of second-order derivative of Gaussian filters, tuned to different (spa-
tial) orientations and (spatiotemporal) speeds. Histograms of the resulting oriented energies
proved effective as additional features to aid the segmentation of a wide variety of scenes,
featuring simple motions and complex dynamic textures. We thus demonstrated that local,
low-level image features describing image dynamics can provide powerful cues within a seg-
mentation framework. An interesting avenue for future work is the study of other types of
filters, e.g. higher-order derivatives of Gaussians, 3D Gabors, and Lognormal filters. These
may offer better selectivity through finer tuning to spatiotemporal orientations. The use of
multiple scales is another direction worth exploring. Finally, the proposed approach offers
potential for handling scenes composed of mixtures of static, moving objects, and dynamic
textures. An annotated dataset of such scenes would offer new challenges and may stimulate
future advances in video segmentation.
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Boundary detection Depth
Method (F-measure, %) (AP, %) ordering (%)
Unsupervised, model-free Proposed, colour + HoME 60.7 56.3 77.0

Proposed, HoME only 50.4 42.3 –
Proposed, colour + flow 58.4 53.2 –
Proposed, colour only 51.1 43.2 –

W/ supervised training Stein and Hebert [22] 66.7 63.7 –
W/ parametric motion model Palou et al. [19] – – 85.3
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Figure 6: Detection of occlusion boundaries on the CMU dataset of sequences with camera
translations. We segment different objects using their relative motions, caused by parallax at
different depths. (Bottom-right image) The strength of an object boundary is not necessarily
uniform. For example, the strong top boundary of the cups indicates a larger depth difference
(with the background) than the bottom boundary (with the table).
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