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Abstract

In this paper, we address a specific use-case of wearable or hand-held camera tech-
nology: indoor navigation. We explore the possibility of crowdsourcing navigational
data in the form of video sequences that are captured from wearable or hand-held cam-
eras. Without using geometric inference techniques (such as SLAM), we test video data
for navigational content, and algorithms for extracting that content. We do not include
tracking in this evaluation; our purpose is to explore the hypothesis that visual content,
on its own, contains cues that can be mined to infer a person’s location. We test this
hypothesis through estimating positional error distributions inferred during one journey
with respect to other journeys along the same approximate path.

The contributions of this work are threefold. First, we propose alternative methods
for video feature extraction that identify candidate matches between query sequences and
a database of sequences from journeys made at different times. Secondly, we suggest an
evaluation methodology that estimates the error distributions in inferred position with
respect to a ground truth. We assess and compare standard approaches from the field
of image retrieval, such as SIFT and HOG3D, to establish associations between frames.
The final contribution is a publicly available database comprising over 90,000 frames of
video-sequences with positional ground-truth. The data was acquired along more than
3 km worth of indoor journeys with a hand-held device (Nexus 4) and a wearable device
(Google Glass).

1 Introduction
Self-localization within an indoor space has numerous real-world applications, ranging from
navigation inside public spaces and large shopping and social environments to assistive de-
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vices for people with visual impairment. Harvesting information from radio-strength signals
and radio beacons to perform localization is an emerging technology. However, few poten-
tial solutions are as compelling as those using visual information, captured from wearable or
hand-held cameras, and conveyed into knowledge about how to navigate a space.

This work proposes an alternative approach to geometric and SLAM-based localiza-
tion. Location is, instead, associated through visual queries against the paths of other users,
rather than by explicit map-building or geometric inference. We test this idea in a new
dataset of visual paths [17], containing more than 3 km of video sequences captured through
multiple passes along 10 corridors in a large building with ground truth. We compare
custom-designed descriptors with SIFT [12] and HOG3D [9]. Standard Bag-of-Visual Words
(BoVWs) approaches are used to index and associate views between journeys. The results
suggest that, even without tracking, significant cues about localization can be captured and
used to infer location. The application to wearable camera technology – whereby image
cues are harvested from volunteered journeys, then used to help other users of the same
space navigate – is the eventual goal of this work, which is a natural extension to recently
reported approaches based on harvesting environmental signals [25].

2 Related work
Matching between visual paths We define a visual path as a collection of image frames
that are induced by the relative motion of a person in a scene. The work reported in this
paper involves matching the visual paths of a “new” journey instance to previous, similar
instances.

Early work by Matsumoto et al. [13] introduced a similar concept of the “view-sequenced
route representation”. In this scheme, a robot could perform simple navigation tasks by cor-
relating current views against those held in a database. Ohno et al. [14] also worked on
this idea, using the difference between frames of detected vertical lines to estimate changes
in position and orientation. Their results were constrained to controlled robot movement,
and therefore arguably of limited applicability to images obtained from human ego-motion.
Also employing vertical lines as features, this time from omni-directional images, Tang et
al. used estimated position differences between sequences to perform robot navigation [21].
To make the inference more robust, they used recorded odometry at training time. This ap-
proach would certainly reduce the error in the localization task. However, it could lead to
“solving” the training route, without truly analysing the performance of feature matching
methods. Furthermore, without ground-truth available in a crowdsensing setting, the tech-
nique of training with ground-truth is of limited usability. On the other hand, with many
passes through the same space, the reference for a journey could be the visual paths them-
selves. In this case, we would use ground-truth – if available – only to ascertain the accuracy
of proposed matching or localization methods. This is the approach taken in our current
work.

The performance of previously reported methods that use a retrieval-type approach, albeit
of the order of tens of cm, cannot be taken as representative for the evaluation of the methods
presented in this paper. The reviewed publications report results in routes of a few metres in
length. Our evaluation is in a dataset three orders of magnitude longer. Deliberately, we do
not include any tracking, such as Kalman filtering, which can often hide poor measurement
performance.
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Figure 1: Maps of the recording locations (left). A sample path (Corridor 1, C1) with the
multiple passes overlaid (right). Each of these passes represents a database sequence.

Crowdsourcing visual paths. Our usage setting represents a particularly data-intensive
form of crowdsensing in which the image streams from wearable cameras could be volun-
teered to others as reference paths for indoor journeys. An illustration of this concept is
presented in Fig. 1.

This type of crowdsensing approach is gaining interest, with remarkable work from
Google’s indoor localization systems and crowdsourced sensor information and maps [8].
In terms of a retrieval-based visual localization system, the NAVVIS team [7] released a
dataset for evaluating indoor navigation from a camera-equipped robot. They also advanced
earlier work on visual localization based on matching of SIFT descriptors [15] to one using
a bag of features that could be stored in mobile phones for quick retrieval [18, 19]. The
dataset we introduce in this work is not constrained to robot navigation, as it includes the
ego-motion associated with hand-held and wearable devices.

Alternative methods: non feature-based and sensor merging. For outdoor navigation,
the Global Positioning System (GPS) has been in widespread use for many years. In an
indoor context, localization technology is still rapidly evolving [16, 20, 25]. Using visual in-
formation is towards the higher end of computational complexity, and possibly the lower-end
of reliability; one would certainly seek to support this approach with other forms of sensor
such as Received Signal Strength Indication (RSSI) data, magnetometers, and tracking algo-
rithms [16, 18, 19]. In this paper, we seek to explore efficient techniques that could be used
to index and compare the visual path information gathered by multiple user journeys, and to
measure the potential of vision on its own as a localization mechanism.

A biological intuition. Another source of our motivation for the idea of retrieval-based
localization is supported by the well-characterized biological hippocampal place cells [2]
that recognise a location from sensory inputs that include those captured by an animal’s
eyes. This does not suggest that techniques based on optical flow are not relevant: rather,
the striking conclusion from recent research is that multiple approaches to visual location
inference are at work in biological systems, including optic flow [10], and other mechanisms
that may not explicitly involve brain areas specialized in visual motion computation [6].
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Figure 2: The stages in processing image sequences from database and query visual paths
are illustrated above. This does not show the process behind the estimation of ground-truth
for the experiments, which is described separately in Section 4. Variants of the gradient and
pooling operators, quantization approaches and distance metrics are described in Section 3.

3 Methods

3.1 Pipeline
We evaluated the performance of several approaches to matching image queries taken from
one visual path against the remainder of the visual paths. In order to index and query the
visual path datasets, we adopted a sequence of processes that is illustrated in Fig. 2. We
describe the details behind each of the processes (e.g. gradient estimation, spatial pooling)
in Section 3.2. We considered descriptors that operate on single frames (spatial) as well as
descriptors that operate on multiple frames (spatio-temporal).

3.2 Local descriptors
Keypoint based SIFT (KP_SIFT). The original implementation of Lowe’s SIFT descrip-
tor follows the extraction of interesting points in the image that are stable to certain trans-
formations, the “SIFT keypoints” [12]. This is widely used across many branches of com-
puter vision, from object recognition to motion detection and SLAM. We used the standard
implementation from VLFEAT [22] to compute ~∇ f (x,y;σ) where f (x,y;σ) represents the
embedding of image f (x,y) within a Gaussian scale-space at scale σ . We set the parameter
PeakThresh to 0 to filter out small local maxima in scale-space.

Dense SIFT (DSIFT). The Dense-SIFT (DSIFT) descriptor [11] is a popular alternative
to keypoint based SIFT. It sacrifices some invariance properties available with keypoint-
based SIFT, producing descriptors that are densely, rather than sparsely, distributed across
the image. This DSIFT descriptor was calculated by sampling of the smoothed estimate of
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Figure 3: The spatial pooling pattern used for single frame Gabor filtering is based on the
regions shown here. These regions were generated by sampling Eq. (1) to create pooling
masks. The masks can be applied to the Gabor filtered video frame outputs by spatial con-
volution, followed by sub-sampling the output every 3 pixels. See text for further details.

~∇ f (x,y;σ). We used the implementation of the VLFEAT toolbox, setting σ = 1.2, with a
stride length of 3 pixels. This yielded around 2,000 descriptors per frame, each describing a
patch of roughly 10×10 pixels.

Single Frame Gabor descriptors (SF_GABOR). An alternative single frame technique
based on a tuned, odd-symmetric Gabor-based descriptor is the SF_GABOR. For this, we
used 8-directional spatial Gabor filters previously tuned on PASCAL VOC data [5] in order
to provide an implicit encoding of the orientation of local image structures. Each filter gives
rise to a filtered image plane, denoted Gk,σ . For each plane, we compute the discrete spatial
convolution, Gk,σ ∗Φm,n, with a series of pooling functions, Φm,n. The latter are produced
by spatial sampling of the function:

Φ(x,y;m,n) = e
−α

[
loge

(
x2+y2

d2n

)]2
−β |θ−θm|

(1)

with α = 4 and β = 0.4. The values of m and n were chosen to produce 8 angular regions
at each of two distances d1,d2 away from the centre of a spatial pooling region. For the
central region, corresponding to m = 0, there was no angular variation but instead a log-
normal radial decay, with a limiting value at (x,y) = (0,0). This arrangement yielded a total
of 17 spatial pooling regions. The resulting 17×8 fields are sub-sampled to produce dense
136-dimensional descriptors, each representing an approximate 10×10 region, and yielding
around 2,000 descriptors per image frame after spatial sub-sampling.

Space-Time descriptors. Given the potential richness available from space-time informa-
tion, we explored three distinct approaches to generate space-time patch descriptors. When
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generating the descriptor associated with each patch, all approaches yield multiple descrip-
tors per frame, and all take into account neighbouring frames in time. In contrast to a sparse-
sampling approach of a keypoint-based descriptor, all three densely sample the video se-
quence. The three methods are i) HOG 3D [9]; ii) a space-time, antisymmetric Gabor filter-
ing process (ST_GABOR); and iii) a Spatial Derivative, Temporal Gaussian (ST_GAUSS)
filter.

1. The HOG 3D descriptor (HOG3D) [9] was introduced with the aim of extending
the very successful two-dimensional histogram of oriented gradients technique [4],
to space-time fields, in the form of video sequences. HOG 3D seeks computational
efficiencies by smoothing using box filters, rather than Gaussian spatial or space-time
kernels. This allows three-dimensional gradient estimation across multiple scales us-
ing integral video representations, a direct extension of the integral image idea [24].
The gradients from this operation are usually performed across multiple scales. We
used the dense HOG 3D option from the implementation of the authors, and the set-
tings yielded approximately 2,000 descriptors per frame of video. Each descriptor
contained 192 elements.

2. Space-time Gabor (ST_GABOR) functions have been used in activity recognition,
structure from motion and other applications [1]. We performed one dimensional con-
volution between the video sequence and three one-dimensional Gabor functions along
either one spatial dimension i.e. x or y, or along t. The one-dimensional convolution
is crude, but appropriate if the videos have been downsampled. The spatial extent of
the Gabor function was set to provide one complete cycle of oscillation over approxi-
mately 5 pixels of spatial span, both for the x and y spatial dimensions. The filter for
the temporal dimension was set to provide around one oscillation over 9 frames. We
also explored symmetric Gabor functions, but found them rather less favourable.

After performing three separate filtering operations, each pixel of each frame is as-
signed a triplet of values corresponding to the result of each filtering operation. The
three values are treated as being components of a 3D vector. Over a spatial extent of
around 16× 16 pixels taken at the central frame of the 9-frame support region, these
vectors contribute weighted votes into descriptor bins according to their azimuth and
elevations, with the weighting being given by the length of the vector. The votes are
also partitioned according to the approximate spatial lobe pattern illustrated in Fig. 3.
Each frame had approximately 2,000 ST_GABOR descriptors, each of 221 elements.

3. A final variant of space-time patch descriptor was designed. This consisted of spatial
derivatives in space, combined with smoothing over time (ST_GAUSS). In contrast
to the strictly one-dimensional filtering operation used for the ST_GABOR descriptor,
we used two 5× 5 gradient masks for the x and y directions based on derivatives of
Gaussian functions, and an 11-point Gaussian smoothing filter in the temporal direc-
tion, using a standard deviation of 2. 8-directional quantization was applied to the
angles of the gradient field, and a voting process incorporating gradient magnitude
was used to distribute votes across the bins of a 136-dimensional descriptor. Like the
ST_GABOR descriptor, pooling functions, similar to those shown in Fig. 3, were ap-
plied. The number of descriptors produced was the same as for the other methods
using patch-level descriptions.

Citation
Citation
{Kläser, Marszalek, and Schmid} 2008

Citation
Citation
{Kläser, Marszalek, and Schmid} 2008

Citation
Citation
{Dalal and Triggs} 2005

Citation
Citation
{Viola and Jones} 2001

Citation
Citation
{Bregonzio} 2009



RIVERA-RUBIO ET AL.: ASSOCIATING LOCATIONS FROM WEARABLE CAMERAS 7

3.3 Quantization and histogram encoding
For the approaches described in Section 3.2, hard assignment (HA) was applied to assign
descriptors to a dictionary term. The dataset was partitioned by selecting M− 1 of the M
video sequences of passes through each possible path. These M− 1 sequences have a total
of N frames. A dictionary of visual words was created by running the k-means algorithm on
the partitioned set of training descriptors contained in the N frames. We fixed the dictionary
size to 4,000 in order to achieve a balance between computational time and atom stability,
and allowing comparison with the work of others [3].

The resulting dictionaries were then used to encode the descriptors of the M−1 training
passes and the remaining query pass. First, the descriptors found in every frame were each
assigned to the nearest visual word using a Euclidean distance metric. Secondly, the fre-
quency of occurrence of the dictionary words (or atoms) for every frame was used to create a
histogram representing each frames in the training database, and the same process was used
to encode each possible query frame from the remaining path (which was not used to build
the dictionary). These histograms were all L2-normalised.

3.4 Localization using histogram distances
Once histograms had been produced, a distance measurement was used to compare the sim-
ilarity of histograms in a query frame with the database entries. The query operation was
simply performed by using the kernel approaches described in [23]. We used the χ2 kernel;
other kernels such as the Hellinger, are possible, but the χ2 option appeared to work best in
the tests we conducted. For the M− 1 videos captured over each path in the database, the
queries were constructed from the remaining path. Each query frame, Hq, resulted in M−1
separate comparison vectors containing scores. By using these kernel-based comparisons
(which are always positive, and act as the inverse of a distance metric), we identified the best
matching frame, f̂ , from pass, p̂, across all of the M−1 vectors. This may be expressed as:

L(p̂, f̂ ) = argmax
p, f
{KD(Hq,Hp, f )} (2)

where Hp, f denotes the series of normalised histogram encodings, indexed by p drawn from
the M−1 database passes, and f denotes the frame number within that pass. KD denotes the
so-called “kernelized” version of distance measure [23]. To measure the localization error,
we used the ground-truth estimates that were acquired at the same time as the videos. The
estimated position of a query, L, was simply taken to be that of the best match given by Eq.
(2). However, in a more robust implementation, checks could be done that would require
similar matches in neighbouring frames, both in query and pass.

4 Experiments

4.1 Data acquisition and ground truth
A total of 60 videos were acquired from 6 corridors of a large building. Two different devices
were used for the acquisition, with 30 videos each. One was an LG Google Nexus 4 phone
running Android 4.4.2. The video data was acquired at approximately 24-30 fps at two dif-
ferent resolutions, 1280×720 and 1920×1080 pixels. Google Glass (Explorer edition) was
used at a resolution of 1280×720, at a frame rate of 30 fps. A surveyor’s wheel (Silverline)
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Photo Length (m) No. of frames
Avg Min Max Avg Min Max

C1 57.9 57.7 58.7 2157 1860 2338

C2 31.0 30.6 31.5 909 687 1168

C3 52.7 51.4 53.3 1427 1070 1777

C4 49.3 46.4 56.2 1583 1090 2154

C5 54.3 49.3 58.4 1782 1326 1900

C6 55.9 55.4 56.4 1471 1180 1817

Total 3.042 km 90,302 frames

Table 1: A summary of the dataset with thumbnails.

with a precision of 10 cm and error of ±5% was used to record distance, but was modified
by wiring its encoder to a Raspberry Pi running a number of measurement processes. The Pi
was synchronised to network time, enabling synchronisation with timestamps in the video
sequence. Because of the variable-frame rate of acquisition, timestamp data from the video
was used to align ground-truth measurements with frames. This data was used to assess the
accuracy of associating positions along journeys through frame indexing and comparison.

The dataset contains 3.05 km of journey data acquired at a casual indoor walking speed.
For each corridor, ten passes (i.e. 10 separate visual paths) were obtained. Five of these
videos were acquired with the hand-held Nexus, and the remainder with Glass. Table 1
summarises the acquisition. The length of the sequences varies, due to a combination of
different walking speeds and/or different frame rates and corridor lengths. A combination
of daylight/nighttime acquisitions was also performed, and prominent windows occasionally
introduced strong lighting in some portions of the videos. Variations are observable in some
of the corridors from one pass to another, due to physical changes and occasional appear-
ances from people walking along. In total, more than 90,000 frames of video were labelled
with positional ground-truth in a path-relative fashion. The dataset is publicly available at
[17].

4.2 Error distributions

We estimated localization error distributions in order to quantify the accuracy of being able
to associate locations along physical paths in corridors within the dataset described in Sec-
tion 4.1. By permuting the paths that are used as reference journeys, and by randomly select-
ing query images from the remaining path, we are able to estimate the error in localization.
Repeated runs with random selections of groups of frames allowed the variability in these
estimates to be obtained. This includes effects that might be due to different paths being
selected as the reference set. To estimate the error distributions, we measured the absolute
error in localization as a distance, ε , relative to the ground truth for that route. These errors
are provided as estimates of P(ε < x). We used the ground-truth information acquired as
described in Section 4.1.

In Figs. 4a to 4f, we provide separate assessments of the variability in error distribution
when 1 million permuted queries are performed; these were obtained by cycling through
1,000 permutations of 1,000 randomly selected queries. In Fig. 4g, we compare the error
distributions of all techniques. For long distances, the CDFs of error for all methods ap-
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proaches unity; we thus only show a close-up of the interval [0,25] m.
All the results were generated with a downsampled version of the videos at 208× 117

pixels; these are also supplied with the dataset.

5 Results
We calculated the average absolute positional error (in metres) and the standard deviation of
the absolute positional errors across the provided dataset, and these are shown in Table 2.
For these errors, all queries, by a leave-one-out strategy, have been used, but there is oth-
erwise no random sampling of the queries. Standard deviations of the absolute errors are
also provided. Table 2 also provides the Area-Under-Curve (AUC) values obtained from the
CDFs of Fig. 4g.
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Figure 4: Cumulative Distribution Functions of the methods under study.

The results show that localization is achieved with good accuracy in terms of CDF and
AUC without a large difference between the applied methods, despite the big diversity in
their complexity. Absolute errors show significant differences between methods, with av-
erage absolute errors in the range of 1.5 m to 4.20 m. Single frame methods (SF_GABOR,
KP_SIFT and DSIFT) perform slightly better than spatio-temporal approaches. This is not
surprising, as the spatio-temporal methods might be strongly affected by the self motion over
fine temporal scales.

In spite of using image retrieval methods in isolation, the attainable accuracy appears to
be in line with those of other methods reviewed in Section 2. However, previously reported
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Method Error summary (m) AUC (%)
µε σε Min Max

SF_GABOR 1.59 0.11 96.11 96.39
DSIFT 1.62 0.11 95.96 96.31

KP_SIFT 2.14 0.17 94.58 95.19

ST_GAUSS 2.11 0.24 94.82 95.57
ST_GABOR 2.54 0.19 93.90 94.44

HOG3D 4.20 1.33 90.89 91.83

Table 2: Summaries of average absolute positional error and standard deviation of positional
errors for different descriptor types. µε is the average absolute error, and σε is the stan-
dard deviation of the error in metres. Top: single frame methods. Bottom: spatio-temporal
methods.

methods include tracking, the use of other sensors, or estimates of motion. In this work, no
form of tracking was used in estimating position: this was deliberate, in order that we could
assess performance in inferring location from the visual data fairly. Introducing tracking
will, of course, improve localization performance, and could reduce query complexity. Yet,
tracking often relies on some form of motion model, and for pedestrians carrying or wearing
cameras, motion can sometimes be relatively unpredictable.

6 Conclusion

We have presented three main contributions to the topic of indoor localization using visual
path matching from wearable and hand-held cameras. We provide an evaluation of six local
descriptor methods: three custom designed and three standard image (KP_SIFT and DSIFT)
and video (HOG3D) matching methods as baseline. These local descriptions follow a stan-
dard bag-of-words and kernel encoding pipeline. The code for both the local descriptors and
for the evaluation pipeline is available on the web page [17]. We also make available a large
dataset with ground truth of indoor journeys to complete the evaluation framework.

The results show that there is significant localization information in the visual data, and
that errors as small as 1.6 m over a 50 m distance can be achieved, even without tracking.
We have reported the results in two ways: a) average absolute positional errors, and b) error
distributions, both of which allow image descriptions to be assessed for their localization
capability. The latter could also be used to build a measurement model for inclusion in a
Kalman or particle filter aimed at supporting human ambulatory navigation.

We plan to introduce tracking in future work. There are, of course, numerous other en-
hancements that one could make for a system that uses visual data; integration of data from
other sensors springs to mind, such as inertial sensing, magnetometers and RSSI. Although
fusing independent and informative data sources would theoretically lead to improvements
in performance, we would argue that the methods applied to infer location from each in-
formation source should be rigorously tested, both in isolation and as part of an integrated
system. This would help ensure that real-world systems would be somewhat robust to sensor
failure. We anticipate that using vision to associate locations in the journeys of several users
through their visual paths could play an important role in navigation.
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