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Abstract

Transform coding (TC) is an efficient and effective vector quantization approach
where the resulting compact representation can be the basis for a more elaborate hier-
archical framework for sub-linear approximate search. However, as compared to the
state-of-the-art product quantization methods, there is a significant performance gap in
terms of matching accuracy. One of the main shortcomings of TC is that the solution
for bit allocation relies on an assumption that probability density of each component of
the vector can be made identical after normalization. Motivated by this, we propose an
optimized transform coding (OTC) such that bit allocation is optimized directly on the
binned kernel estimator of each component of the vector. Experiments on public datasets
show that our optimized transform coding approach achieves performance comparable
to the state-of-the-art product quantization methods, while maintaining learning speed
comparable to TC.

1 Introduction
Given a high dimensional query representation, retrieval of a few closest representations
from a large scale (up to billions) high dimensional data set has been at the heart of many
computer vision problems, such as image/video retrieval, image classification, object/ scene/
place recognition. Despite prolonged study, the problem of efficiently finding nearby points
in high dimensions remains unsolved. This difficulty has led to the development of approx-
imate nearest neighbor (ANN) search such as locality-sensitive hashing (LSH) [3], random-
ized KD-trees [19], hierarchical k-means [15], spectral hashing [21], product quantization
[4, 8, 9, 16], and transform coding [2].

Code compactness is also important in the context of large-scale retrieval as memory size
is often the primary determinant of system performance. For example, one billion data of
64-bit codes can still be loaded into memory to utilize memory DB. However, LSH [3] does
not produce compact codes due to its randomized nature. In addition, there are many other
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alternative approaches such as randomized KD-trees [19] and hierarchical k-means [15] that
outperform LSH.

In general, the quality of learned nodes using hierarchical k-means [15] and KD-trees
[19] degrades as dimension of the input data grows and the sample data becomes sparse.
More importantly, an erroneous decision made at the top level propagates during tree traver-
sal.

Spectral hashing [21] achieves code efficiency which is a significant improvement over
LSH under the Euclidean norm. Although hashing techniques are in general useful for near-
duplicate search, they are less effective at ranged searches, where it is necessary to explore
a potentially large neighborhood of a point, and distance estimation in the original space is
typically not possible using the hash representation. For example, a feature vector A can be
mapped to a hash H(A). In this case, of particular interest could be a search of K nearest
neighborhood (KNN) of A in the original space. However, it is not easy to compute a list of
KNN since there is a large difference between the neighborhoods of H(A) and that of A.

Jegou et al. [8] propose a product quantization (PQ) method where input vectors are par-
titioned into a predetermined number of equal-sized sub-spaces. Then sub-vectors in each
sub-space are quantized independently using k-means with a constant number of centers de-
termined by bits per sub-space and Cartesian product of each of the independently estimated
centers can produce codewords to represent the original space. This approach can generate
millions of codewords efficiently for high dimensional data as compared to k-means on the
original space.

Ge et al [4] propose optimized product quantization (OPQ) improving PQ by transform-
ing input vectors such that each sub-space becomes less dependent on each other and the sum
of eigenvalues of each sub-space is balanced. There is a significant improvement in terms
of KNN search accuracy over the original PQ [8]. However, the use of k-means method for
each sub-space can still be prohibitive when the size of the training set is large and the data
is high dimensional, since the computation complexity of k-means is quadratic in the size of
the training set, and linear in the data dimension.

Brandt [2] proposes a transform coding (TC) method. Brandt’s method [2] is a very sim-
ple and efficient quantization technique using transform coding and a scalar PQ. Although it
has good performance in terms of KNN search accuracy with greater speed, simplicity, and
generality, OPQ [4] outperforms TC significantly.

Motivated by these, we propose optimized transform coding to improve the KNN search
performance of TC. Our optimized transform coding (OTC) estimates underlying probability
density of the PCA coefficients by binned kernel estimator, and then performs approximate
Lloyd-Max algorithm [11, 13] on the estimated probability density. After that, we use a
novel reformulation of the bit allocation problem to make it computationally tractable. Our
proposed OTC approach has speed, simplicity, and generality similar to TC [2], with KNN
accuracy comparable to the state of the art OPQ [4].

2 Optimized Transform Coding
We introduce our optimized transform coding (OTC) in the context of general vector quan-
tization. A quantizer encoder e(x) is a real-valued function E : Rn→I characterized by the
region it induces on the input space,Rn

x = {x ∈ Rn(i) : e(x) = i} and ∪L
i=1Rn(i) = Rn where

I = {1, · · · ,L} and x is an input vector. The decoder d(i) is a real-valued functionD : I →Rn

characterized by the codebook C = {i ∈ I : d(i) = yi} ⊂ Rn. The mean distortion error of
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the given quantization level L (MDE) of the quantization is given as:

MDE(L) =
L

∑
i=1

∫
Rn(i)

f (x)Dist(x,d (e(x)))dx (1)

where f is an estimated probability density function of multi-dimensional vector x and
Dist(x,x′) is a distortion error between x and x′.

In general, to find the optimal set of region Rx, the codebook C, and the given quantiza-
tion level L, minimum-distortion quantizer aims to minimize mean distortion error (MDE)
as follows: (

Ropt
x ,Copt)= arg min

Rx,C
MDE(L) (2)

Although design of such a scalar quantizer to satisfy the minimum distortion criterion
is well understood, vector quantization is still an open problem. For instance, it can be
challenging to obtain sufficient sample data to characterize f (x). Moreover, solving Eq. (2)
is computationally expensive in high dimensions.

However, if p(x) is independent in its components (dimensions), and the metric is of the
form given as:

Dist(x,x′) =
D

∑
k=1

dist(xk,x′k), (3)

where D is a dimension of x, xk are the kth component of x, and dist(xk,x′k) is a distance
metric between xk and x′k, we can obtain a minimum distortion quantizer by forming the
Cartesian product of the independently quantized components. That is, the vector quanti-
zation encoder can be of a form, e(x) = [e1(x1), · · · ,eD(xD)]

T . In the original PQ [8, 9], D
dimensional space is divided into M sub-spaces (typical M is 8) to form given as:

e(x) = [e1∼K (x1∼K) , · · · ,e7K+1∼8K(x7K+1∼8K)]
T where K = D/M. (4)

However, each component is not independent in practice. Therefore, TC [2] and OPQ
[4] aim to minimize inter-component dependencies using the principal component analysis
(PCA) and show great success over the original PQ [8, 9]. After minimizing the inter-
component statistical dependencies using PCA, the quantizer design problem reduces to a set
of M number of independent K dimensional problems. In TC, K = 1 and M = D. The major
difference between OPQ and TC lies in the bit-allocation approach used in each method.
The key difference is that OPQ assigns the same number of bits per sub-space, while TC
assigns a different number of bits per sub-space. Therefore OPQ finds the best combination
of components for each sub-space while maintaining the same number of bits for each sub-
space while TC finds the number of bits suitable for each sub-space.

In the context of TC, each quantizing encoder ek at the kth dimension is designed inde-
pendently for every 1≤ k ≤ D to minimize the expected distortion given as:

MDEk(Lk) =
Lk

∑
i=1

∫
Rk(i)

fk(ck)distk (ck,dk (ek (ck)))dck. (5)

where ck is PCA coefficient after projection of x to PCA subspace k.
Therefore, a vector quantization using B-bits code is summarized as follows:

(L,Rc,C)opt = arg min
L,Rc,C

D

∑
k=1

MDEk(Lk) subject to
D

∑
k=1

log2(Lk) = B. (6)

If the number of distinct quantization levels per kth component Lk is known for a total tar-
get bit B, a product quantizer can be obtained by using the minimum distortion criterion.
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Optimal bit allocation is achieved by minimizing the expected distortion due to quantiza-
tion. However, solution to this optimization problem for general distributions and distortion
functions requires computationally prohibitive numerical search [2].

Instead, Brandt [2] adopted greedy integer-constrained allocation algorithm [5] to assign
bits. Number of the quantization level set to be proportional to the variance of the data under
the two assumptions that 1) probability density of each component can be made identical
after the normalization and 2) per-component distortion functions are identical. However,
the first assumption can be easily violated in many cases (e.g., non-Gaussian probability
density function). Motivated by this problem, we propose to solve Eq. (6) directly in our
proposed optimized transform coding (OTC).

2.1 Problem Statement
In our proposed OTC, the optimal bit allocation problem is formulated as a constrained
minimization problem as:

(L,Rc,C,T )opt = arg min
L,Rc,C,T

(
Ob j(L,Rc,C,T ) =

[
T

∑
k=1

MDEk(Lk)λk +
D

∑
k=T+1

Ekλk

])
(7)

subject to ∑
T
k=1 log2(Lk) = B where Ob j(L,Rc,C,T ) is a nonlinear mean distortion error of

the quantization, λk is an eigenvalue of kth subspace of PCA, Ek is an information loss due
to dimensionality reduction of PCA, T is the dimension after dimensionality reduction, B is
the number of target bits, and D is the dimension of the original vector.

In solving Eq. (7), there are three major challenges to overcome.
1. How can we estimate fk(ck) efficiently for millions of ck for 1≤ k ≤ D?
2. How can we optimally estimate L,Rc efficiently for millions of ck for 1≤ k ≤ D?
3. How can we minimize Ob j(L,Rc,C,T ), a nonlinear system subjects to integrality

requirements for the variables?
In this paper, we address each of the above challenges in the following sections.

2.2 Efficient Estimation of Density Function of PCA coefficients
Accurate and efficient estimation of probability density functions of PCA coefficients fk(ck)
in Eq. (5) is an important step to optimize Eq. (7). We first perform Principal Component
Analysis (PCA) to minimize inter-component dependencies. Then we perform binned kernel
estimation (BKE).

Principal Component Analysis: For a set of N number of D×1 vectors given as x1, · · · ,xN,
a principal component analysis is performed for a covariance matrix given as:

Cov =
1
N

N

∑
i=1

(xi−xm)(xi−xm)
T =

1
N

N

∑
i=1

xixT
i −x2

m = PΣPT (8)

where P = [p1, · · · ,pD] is projectction matrix of eigenvectors, Σ=diag(λ1, · · · ,λD) is a diag-
onal matrix with eigenvalues in descending order, and xm = 1

N ∑
N
i=1 xi.

In this manner, we can perform PCA efficiently for very large N since the memory re-
quirement of Eq. (8) does not depend on N but on D×D and the computation of Eq. (8) can
be easily parallelizable where D is the dimension of xi. The PCA coefficients are given as
ci = PT(xi−xm). For these coefficients, we perform weighted density estimation for each
dimension d = 1∼ D using a weighted Parzen Window estimation below.
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Binned Kernel Estimator (BKE): The use of BKE enables to deal with millions of float-
ing data efficiently since its memory requirement does not depend on the number of training
data N but on the number of bins. For all kth PCA coefficients ck, we compute BKE. For
D×N PCA coefficients matrix1:

C = [c(1), · · · ,c(N)] where c( j) = [c1( j), · · ·cD( j)]T , (9)

we first compute D number of normalized histogram for ck = [ck(1), · · · ,ck(N)] where ck is
a kth row vector of C where 1 ≤ k ≤ D. The computed histogram for ck is given as a set of
bin locations ṡ[i]k and their weights w[i]

k where i is an index of bin. The bin size is given as

ṡ[i+1]
k − ṡ[i]k = α × εMF where εMF is the machine epsilon of float type. Therefore, the total

number of bins is given as M(k) =
max

(
ṡ[i]k

)
−min

(
ṡ[i]k

)
αεMF

. In this paper, we set α = 50. In this
manner, the maximum number of bins is fixed regardless of N (e.g., there are about 166,667
number of bins for ck with 0≤ ck ≤ 1 range in C++ since εMF = 1.19209×10−7).

The created histogram for dimension k is given as H(k) =
{(

ṡ[i]k ,w
[i]
k

)
|1≤ i≤M(k)

}
.

For the set of
(

ṡ[i]k ,w
[i]
k

)
, the weighted density estimation is given as:

fk(sk) =
Rk

∑
i=1

Kh(sk− ṡ[i]k )w
[i]
k . (10)

Note that the evaluation of Eq. (10) requires constant time since ṡ[i]k is ordered scalar

value and Kh(sk− ṡ[i]k ) produces zero values outside of the kernel bandwidth. Therefore, the

evaluation of fk(s) for all ṡk takes O(N). We precompute fk(ṡ
[i]
k ) for all i and k to construct 2

dimensional table Tf (k, i) where Tf (k, i) holds fk(ṡ
[i]
k ), 1≤ k ≤ D, and 1≤ i≤M(k).

2.3 Approximate Lloyd-Max Algorithm on the BKE
With the binned kernel estimator of PCA coefficient ck with 1≤ k≤D, we can use the results
of Lloyd-Max algorithm. The mean distortion of the quantization (MDE) is measured by the
mean squared error (MSE) given as:

MDEk(Lk) = MSEk(Lk) =
Lk

∑
i=1

∫
Rk(i)

fk(sk) [sk−d (e(sk))]
2 dsk. (11)

where the subscript k stands for dimension index of the PCA coefficients in the previous
section.

In general, to find the optimal set of boundaries Rk, the codebook Ck, and the given
quantization level Lk, Llyod-Max algorithm [11, 13] aims to minimize MSE as follows:(

Ropt
k ,Copt

k

)
= argminRk,Ck MSEk(Lk) (12)

We repeat the steps of Lloyd-Max algorithm:

Step 1: yi =

∫ ti+1
ti sk fk(sk)dsk∫ ti+1

ti fk(sk)dsk
, Step 2: ti =

yi+1 + yi

2
(13)

until convergence where Rk(i) = {sk|ti−1 ≤ sk < ti}.
1The D×N PCA coefficient matrix is shown for explanation purpose only.

Citation
Citation
{Lloyd} 2006

Citation
Citation
{Max} 1960



6 M. PARK & AL.: OPTIMIZED TRANSFORM CODING FOR APPROXIMATE KNN SEARCH

However, evaluating
∫ ti+1

ti sk fk(sk)dsk and
∫ ti+1

ti fk(sk)dsk for every iteration using a stan-
dard numerical integration is prohibitive since optimal set of Lk for 1≤ k ≤ T and T are not
known. Therefore the integration in “Step 1” is replaced by our proposed integral approxi-
mation as follows:∫ s[m]

k

s[n]k

fk(sk)skdsk ≈
∆sk

αεMF

[
fk(ṡ

[m+1]
k )ṡ[m+1]

k − fk(ṡ
[n]
k )ṡ[n]k

]
+(

∆s2
k

αεMF
−∆sk)

[
fk(ṡ

[m+1]
k )− fk(ṡ

[n]
k )
]
+

m

∑
i=0

fk(ṡ
[i]
k )ṡ

[i]
k −

n−1

∑
i=0

fk(ṡ
[i]
k )ṡ

[i]
k

(14)

∫ sk[m]

sk[n]
fk(s)ds≈ ∆sk

αεMF

[
fk(ṡ

[m+1]
k )− fk(ṡ

[n]
k )
]
+

m

∑
i=0

fk(ṡ
[i]
k )−

n−1

∑
i=0

fk(ṡ
[i]
k ) (15)

The derivation of Eqs. (14) and (15) can be found in an accompanied supplementary mate-
rial.

The evaluation of ∑
m
i=0 fk(ṡ

[i]
k ) and ∑

m
i=0 fk(ṡ

[i]
k )ṡ

[i]
k in Eqs. (14) and (15) take O(N) at

most and they can be precomputed to enable constant time evaluation of Eqs. (14) and
(15). The value of ∑

m
i=0 fk(ṡ

[i]
k ) is stored in table Tcd f (k,m) and the value of ∑

m
i=0 fk(ṡ

[i]
k )ṡ

[i]
k is

stored in table Tcd f x(k,m). Eq. (13) repeats until convergence using the precomputed tables
Tcd f (k,m), Tcd f x(k,m), and Tf (k,m)(Section 2.2).

Since Eq. (13) can be computed in constant time and is independent of N, this process
finishes in constant time as well2. Fig. 1 shows a distribution of the first PCA coefficient in
one of our evaluation datasets (SIFT1M [9]) and its quantization using our proposed meth-
ods. It shows that the distribution in this case is bimodal.

2.4 Non-linear Constrained System subjects to Integrality

�� ���� � ��� � �������
�

����
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����
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���
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Figure 1: Left: Binned Kernel Estima-
tion for c1 of sift1M data set. Right: Re-
sults of Lloyd-Max Algorithm. The green
vertical lines are yi and the black vertical
lines are ti in Eq. (13) where L1 is 32 (5
bits).

Eq. (7) is a nonlinear system subject to integral-
ity requirements for the variables. Research ef-
forts in the past fifty years have led to develop-
ment of linear integer programming as a mature
discipline of mathematical optimization. Such
a level of maturity has not been reached when
one considers nonlinear systems subject to inte-
grality requirements for the variables. Although,
there are several approaches such as simulated
annealing and genetic algorithm to solve this
problem, such solutions generally require heavy
and lengthy computation and cannot guarantee
the integral solution.

The approach introduced by Shoham and Gersho [18] could be used to compute the
optimal bit allocation where they solve the bit allocation problems using the Lagrange mul-
tiplier method and dynamic programming. However, it requires good initialization and the
number of necessary iterations can be significant. Other variants of the algorithm have been
developed to overcome the requirement of good initialization with convex assumption of
rate-distortion function. In any case, a closed form of distortion function is required to find
the optimal bit allocations and that prevents us from using these algorithms.

2The algorithm converges after 10 ∼ 20 number of iterations.
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Algorithm 1 Optimized Transform Coding, Q = OTC(xi,B,N,Kh,α)

1: Compute Cov = PΣPT

= 1
N ∑

N
i=1 xixT

i −
[ 1

N ∑
N
i=1 xi

]2
2: Compute ci for all i by ci = PT(xi−xm)
3: Compute histogram H(k) for all k,

1≤ k ≤ D using α

4: Compute Tf (k, i) = fk(ṡ
[i]
k ) for all k and i us-

ing a kernal Kh

5: Compute Tcd f (k, i) = ∑
i
j=1 fk(ṡ

[ j]
k ) for all k

and i
6: Compute Tcd f x(k, i) = ∑

i
j=1 fk(ṡ

[ j]
k )ṡ[i]k

for all k and i
7: Initialize 2 dimensional sparse arrays,

AMDE(·, ·),AR(·, ·),AC(·, ·)
8: Find a feasible solution set

S= {Si|1≤ i≤Ns} by Diophantine solver [1]

9: for all Si for 1≤ i≤ NS do
10: Ob j = 0
11: for all Lk for 1≤ k ≤ D do
12: if k ≤ T (i) then

13: if AMDE(k,Lk) == /0 then
14:

(
Ropt

k ,Copt
k ,MDEopt

)
=

argminRk ,Ck ,MDEk MDEk(Lk)
15: AMDE(k,Lk) = MDEopt ,

AR(k,Lk) =Ropt
k ,

AC(k,Lk) = Copt
k

16: end if
17: Ob j+= AMDE(k,Lk),

Rk = AR(k,Lk),
Ck = AC(k,Lk)

18: else
19: Ob j+= Ek
20: end if
21: end for
22: EMSE(i)← Ob j
23: Q(i)←R= {R1, · · · ,RT (i)},

C = {C1, · · · ,CT (i)}
24: end for
25: imin = argminiEMSE(i)
26: return Q = Q(imin)

However, we propose the following constraints to assign more number of bits to the PCA
dimension having larger variance:

T

∑
k=1

log2(Lk) = B where L1 ≥ L2 ≥ ·· · ≥ LT , log2(L1)≤ Bc, and Bc ≤ B. (16)

We then propose to formulate Eq. (16) as a system of linear Diophantine Eqs. [14] as
follows: Bc

∑
k=1

k×nk = B,
Bc

∑
k=1

nk = T, 0≤ nk ≤ T (17)

where nk is the number of dimensions which are assigned k-bits. That is, Eq. (17) enforces
that a weighted sum of product of monotonically increasing bits k and the number of di-
mensions nk that use k bits should be B, and the sum of all dimensions nk should be T . For
example, for Bc = 4, B = 12, and T = 5, one of feasible solutions (n4,n3,n2,n1) = (1,1,2,1)
means (L1,L2,L3,L4,L5) = (24,23,22,22,21). We use a linear Diophantine solver intro-
duced by Aardal et al. [1] to solve the general Diophantine Eqs. in Eq. (17). The results
of the Diophantine solver can be precomputed and reused since the Diophantine solution is
independent of the dataset.

The size of the solution space of Eq. (16) becomes numerically tractable with our pro-
posed efficient Lloyd-Max algorithm on the binned kernel estimator. For all feasible solution
set given as: �����������������������������������������������������������������

	
 	
 	
�� 	
��

�	
 �	
�� �� �� (18)
for 1 ≤ i ≤ NS where T (i) is the maximum dimension for the ith solution and NS is the
total number of feasible solutions, we minimize MSEk(Lm) for all 1 ≤ m ≤ T (i) and for all
1≤ k ≤ D to compute the Ob j(L,Rc,C,T ) in Eq. (7). To enable efficient computation, the
computed MSEk(Lm) is stored in a sparse array. Algorithm 1 summarizes our proposed OTC.
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Steps 1 through 6 correspond to Section 2.2 and steps 7 through 26 correspond to Section
2.4 where step 14 corresponds to Section 2.3. For each PCA coefficient (ck) of a vector, the
codeword is assigned by the learned Rk(i) as follows: ck is assigned to codeword index i
when ck ∈ Rk(i).

3 Experiments and Results
We evaluate the performance of our proposed optimized transform coding for three pub-
lic dataset. The first two data sets are SIFT1M and GIST1M introduced by Jegou et al.
[9] where SIFT1M contains 1 million 128 dimensional SIFT feature [12] vectors with 10K
queries and GIST1M contains 1 million 960 dimensional GIST feature [17] vectors with 1K
queries. The third data set is MNIST [10] which contains 70K images of hand written digits
where each image has width and height of 28 × 28. We use the same 10k queries obtained
from the authors of [4]. Following the experiment setting of [4], the top 100 nearest neigh-
bors are considered as the true neighbors. The distance between a query and any vector is
approximated by the distance of their codewords (known as Symmetric Distance Compu-
tation or SDC) and the data is sorted with respect to the rank. We compare the following
methods:

OTC Our optimized transform coding TC Transform coding [2]
Optimized product quantization Optimized product quantizationOPQP with a parametric solution [4] OPQNP with a non-parametric solution [4]

Product quantization Product quantization withPQRO with a random order [9] PQRR PCA and random rotation [7]
ITQ One of the state-of-the-art hashing method, a special vector quantization [6]

Performance on Speed: On an average across multiple bit lengths, the speed of training
using the proposed OTC is 8.15 times faster than OPQP and 23.61 times faster than OPQNP
on SIFT1M [9]. On GIST1M [9], the OTC is 22.65 times faster than OPQP and 54.32 times
faster than OPQNP. On MNIST [10], the OTC is 5.99 times faster than OPQP and 10.61
times faster than OPQNP. The detailed performance speed-up numbers for 32/64/128 bits
are shown in Table 2 and Fig. 2. In our experiments, we do not use any non-exhaustive
methods like inverted files [20], as that is not the focus of this paper. Detailed computation
times for each of the steps in our proposed OTC pipeline can be found in the Table 1.

(a) SIFT1M [9] (b) GIST1M [9] (c) MNIST [10]

Figure 2: Timing measured in seconds on a Intel i7 2.6Ghz machine. (a) Size of learning
set is 100,000 with 128 dimensional data. (b) Size of learning set is 500,000 with 960
dimensional data. (c) Size of learning set is 70,000 with 784 dimensional data. Note: For
32-bits, OPQP took longer than OPQNP since the number of dimension assigned to each
subspace is quite large (784/4 = 196) and OPQP did not converge until max number of
iterations is reached.
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Table 1: Actual time in seconds for the optimized transform coding
Data SIFT1M [9] GIST1M [9] MNIST [10]
Bits 32 64 128 32 64 128 32 64 128

PCA (seconds) 1.2 125.1 39.9
BKE (seconds) 25.1 103.9 64.4

Optimization (seconds) 7.2 14.0 36.1 116.2 279.3 658.6 30.5 52.7 94.7
Query (seconds) 0.05 0.06 0.09 0.04 0.05 0.09 0.02 0.02 0.02

All of OPQNP,OPQP, and OTC have a computation time linear in the data dimension
in order to learn optimal quantization. However, our proposed OTC has computation time
linear in the size of the training data, whereas OPQNP and OPQP have a quadratic computa-
tion time. In addition, the quantization of input data using OTC has a O(logKi) computation
time where Ki is the number of quantization levels at ith dimension. This is so because OTC
is a scalar product quantizer and an assignment of the ith dimensional value of the input data
to one of the quantization level can be done by using the range tree. However, the quanti-
zation using the OPQNP or OPQP has a O(K̂i) computation time where K̂i is the number
of the quantization level at ith subspace. Therefore, retrieval speed of OTC can be made
much faster than OPQNP and OPQP. Note that the retrieval speed of OTC in the Table 1 is
recorded using a brute-force quantization rather than using the desired range tree.

Table 2: Mean Average Precision (mAP) and Speed Improvement

MNIST [10] PQRR PQRO ITQ TC OPQP OPQNP OTC OPQP(sec)
OTC(sec)

OPQNP(sec)
OTC(sec)

32bit mAP 0.26 0.31 0.30 0.30 0.36 0.46 0.36 11.72 10.83
64bit mAP 0.35 0.45 0.50 0.51 0.60 0.69 0.61 3.16 10.65

128bit mAP 0.47 0.64 0.67 0.68 0.80 0.81 0.81 3.08 10.36

GIST [9] PQRR PQRO ITQ TC OPQP OPQNP OTC OPQP(sec)
OTC(sec)

OPQNP(sec)
OTC(sec)

32bit mAP 0.03 0.02 0.03 0.03 0.05 0.06 0.05 31.06 76.18
64bit mAP 0.04 0.04 0.04 0.07 0.14 0.14 0.13 22.21 53.04

128bit mAP 0.07 0.07 0.06 0.11 0.30 0.30 0.29 14.67 33.75

SIFT [9] PQRR PQRO ITQ TC OPQP OPQNP OTC OPQP(sec)
OTC(sec)

OPQNP(sec)
OTC(sec)

32bit mAP 0.06 0.08 0.04 0.08 0.09 0.11 0.08 7.70 22.37
64bit mAP 0.12 0.20 0.11 0.19 0.24 0.26 0.25 8.82 24.75

128bit mAP 0.28 0.47 0.22 0.37 0.54 0.55 0.56 7.93 23.70

Performance on Accuracy: We compare all results in terms of mean average precision
(mAP) and recall vs. N. As can be seen in Table 2 and Figure 3, our proposed OTC outper-
forms PQRO,PQRR,TC, and ITQ for all dataset in terms of mean average precision (mAP)
and recall vs. N. Bold characters indicate top 3 performers, the red font color indicates the
top performer among all methods, and the blue font color shows baseline TC method to
emphasize OTC’s improvement.

In general, as the number of bits increases, our proposed OTC performs on par with
OPQP and OPQNP in terms of accuracy, with almost 10+ fold speed improvement (See
Table 2 and Fig. 2). All of the reported results, except ours, are provided by Ge et al. [4].

4 Conclusion
We have proposed optimized transform coding to improve the KNN search performance of
TC. Our optimized transform coding estimates underlying probability density of the PCA co-
efficients by binned kernel estimator, and then performs approximate Lloyd-Max algorithm
[11, 13] on the estimated probability density. After that, we use a novel reformulation of the
bit allocation problem to make it computationally tractable. Our proposed OTC approach
has speed, simplicity, and generality similar to TC [2], with KNN accuracy comparable to
the state of the art OPQ [4].
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Recall vs. N for SIFT1M [9]
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(a) 32 bits
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(b) 64 bits
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(c) 128 bits

Recall vs. N for GIST1M [9]
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(d) 32 bits
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(e) 64 bits
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(f) 128 bits

Recall vs. N for MNIST [10]
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(g) 32 bits
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(h) 64 bits
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(i) 128 bits

Figure 3: Top: Recall curve for SIFT1M [9] data set is shown for 32, 64 and 128 bits. Our proposed
OTC outperforms all other methods for 128 bit coding and has comparable performance to the state-of-
the-art OPQ method. Middle: Recall curve for GIST1M [9] data set is shown for 32, 64 and 128 bits.
Our proposed OTC outperforms all other methods for 128 bit coding and has comparable performance
to the state-of-the-art OPQ method. Bottom: Recall curve for MNIST [10] data set is shown for 32, 64
and 128 bits. Our proposed OTC has comparable performance to the state-of-the-art OPQ method.
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