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The problem of estimating the 3D shape of human faces from single im-
ages is of great interest and has attracted considerable research effort.
Many approaches recently proposed to solve this problem could be con-
sidered extensions of Shape-from-Shading (SFS) methods, where a 3D
shape is optimized to generate 2D renderings that match the input images
[1, 5, 7]. Other methods in the literature propose to infer 3D face shape
by fitting a set of feature points between the 2D image and the 3D model
[3, 4, 6].

In this paper, we propose the Two-Fold Coupled Structure Learning
(2FCSL) algorithm, which is capable of reconstructing 3D face models
based on a sparse set of 2D landmarks that could be localized automati-
cally by most of the recently proposed landmark detectors. By explicitly
incorporating 3D-2D pose estimation and formulating the problem into a
two-fold coupled structure learning problem, our method achieves better
robustness to arbitrary pose variations and landmark localization noise.
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3D training faces are stacked together to construct the 3D dense land-
mark (3DDL) model γd
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3D). Similarly, 3D sparse land-
mark (3DSL) model is represented by χs
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is the vector representation of M 3D landmarks. Given a 2D image, a
sparse set of landmarks X I

2D is first detected with any off-the-shelf detec-
tor. Then, the 3D-2D projection matrix P is estimated using least squares
minimization, such that X I

2D = PX̄3D, where X̄3D is the mean of 3DSLs in
the training database. By projecting each 3DSL via P, the corresponding
2D sparse landmark (2DSL) model χs
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2D), where X i
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vector representation of M 2D landmarks, is generated on-line.
By applying PCA to the 3DSL and the 2DSL models, we derive a

compact representations of the corresponding shapes Am and An, based
on which a PLS regression PPLS [2] is learned, Âm = AnPPLS:

X i
3D = X̄3D +

N−1

∑
m=1

ai
mU s

3D Am = [a1
m,a

2
m, · · · ,aN−1

m ] , (1)

X i
2D = X̄2D +

N−1

∑
n=1

ai
nU s

2D An = [a1
n,a

2
n, · · · ,aN−1

n ] . (2)

Following the same procedure, we compute the compact represen-
tation of X I

2D by solving for aI
n = U s
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−1(X I

2D − X̄2D). Then the aI
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recovered by aI
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3D.
After we obtain the 3DSL XR

3D, we aim to reconstruct the 3DDL Y R
3D.

In the training phase, the correlation between 3DSL and 3DDL is implic-
itly learned in a coupled manner.
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By fitting XR
3D to Λs

3D, the shared coefficient α∗ could be recovered
by solving Eq. 4. Then, the final Y R

3D is reconstructed via Eq. 5:
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β0
. (5)
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Figure 1: (a) The input 2D image; (b) frontal view of the face shape
reconstruction; (c) profile view of the face shape reconstruction; and (d)
lifted UV texture.

In the paper, we conducted several experiments using both synthetic
data and real 2D face images from two face datasets. Compared with
[6], our method demonstrates higher reconstruction accuracy and better
robustness to face pose variations and landmark localization noise. Fig. 1
depicts the reconstructed 3D face of Mona Lisa using the famous painting
by Leonardo da Vinci and the lifted texture in a pre-registered UV space.
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