Distributed Non-Convex ADMM-inference in Large-scale Random Fields
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We propose a parallel and distributed algorithm for solving discrete label-
ing problems in large scale random fields. Our approach is motivated by
the following observations: i) very large scale image and video process-
ing problems, such as labeling dozens of million pixels with thousands
of labels, are routinely faced in many application domains; ii) the com-
putational complexity of the current state-of-the-art inference algorithms
makes them impractical to solve such large scale problems; iii) modern
parallel and distributed systems provide high computation power at low
cost. At the core of our algorithm is a tree-based decomposition of the
original optimization problem which is solved using a non convex form of
the method of alternating direction method of multipliers (ADMM). This
allows efficient parallel solving of resulting sub-problems. We evaluate
the efficiency and accuracy offered by our algorithm on several bench-
mark low-level vision problems, on both CPU and Nvidia GPU. We con-
sistently achieve a factor of speed-up compared to dual decomposition
(DD) approach and other ADMM-based approaches.

Probabilistic graphical models such as the Markov Random Fields
(MRF) and Conditional Random Fields (CRF), and related energy min-
imization based techniques have become ubiquitous in computer vision
and image processing. They have been proven especially useful to solve a
variety of important, high-dimensional, discrete inference problems. Ex-
amples include per-pixel object labelling, image denoising, image inpaint-
ing, disparity and optical flow estimation, etc. [2]. Their use nonetheless
implies computational costs that are often not compatible with very large
scale problems met today in many applications. This concern is at the
heart of present work.

We first define a discrete random field Y = {y;,ys,...,yn } attached to
the N nodes of a graph G = (V, £) with vertex set )V and edge set £. Each
random variable takes a label from a discrete space L of size L. We define
Y = £V the set of all possible label assignments. This random field is a
pairwise Markov Random Field (MRF) if there exists an energy function
of the form

E(Y):=Y 60+ Y. 6;0iy)),
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composed of unary and pairwise potentials. Finding the lowest cost label-
ing of the energy over ) is an NP-hard combinatorial problem which can
be written as the Integer Linear Program (ILP)

ILP —MRF : minimize Y 0;-p;+ Y. 6;j-q;
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with respect to  (p,q) € Marg(G).

where 0;, 0;; are vectors of unary and pairwise potentials and p, g are
corresponding binary indicators.

Following [1], we split the original graph G = (V,€) into S sub-
graphs G = (Vs, &), s = 1...S and associate to each one auxiliary vari-
ables p* = {pf}icy, and ¢’ = {qu}(l“j)egj, and potential parameters {67, i €
Vs}and {67}, (i, j) € &}, such that:
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This implies that each node and each edge of the original graph must be
covered by at least one sub-graph and that the sub-graphs can share freely
nodes and edges and that the potentials on all shared vertices or edges of
the sub-graphs sum to that of the original graph.

Given sub-graphs and associated parameters, we aim to replace the
difficult inference problem (2) by a set of sub-problems that can be solved

in parallel, while consistency between them is enforced in some way.
Within the ADMM framework, there are several ways to achieve this goal.
We choose to rely on "master" variables p = {p;}icy at the node level
only. Thanks to constraints (3), it is easy to see that the original ILP-MRF
problem can be written as
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subject to

where pj; = {pi}iey, denotes the sub-vector of p containing variables
only for nodes of s—th sub-graph.

This problem can be turned into an unconstrained minimization prob-
lem by introducing the augmented Largrangian:
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where E(p*,q":6°) = Yicy, 0] P} + ¥ (i jjee, 0541 p€{0, 1}, (p*,¢°) €
Marg(Gy) and A* = {1} };cy, € REXVil. This is a consensus problem in
that we essentially have multiple copies of the same variable that should
take the value of the master.

Vector A is the dual variable as in classic Lagrangian duality and p
is a positive parameter. While the additional penalty destroys the sepa-
rability as compared to classic Lagrangian, it helps solving dual problem
efficiently. The ADMM approach conducts the joint optimization of aug-
mented Lagrangian by alternating the following three steps:

(1) Ly({(p*, ")}, p",{2°0}), s
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In this paper, we show how to solve such problem efficiently on a
modern GPU. Our approach is easy to implement, since each sub-problem
requires one call to a dynamic programming solver, and is highly suitable
for modern GPUs with thousands of CUDA cores. Finally, we show em-
pirically that our approach rapidly converges to a good quality estimates
and is able to return a solution at any point in practice, which is important
when developing interactive systems.
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