Contextual rescoring for Human Pose Estimation
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Given an image of a person, the problem of human pose estimedin F

be briefly described as localizing the position and oriéomedf the body pprag N R ——
limbs. The complexity of the problem comes from issues likekground L& ‘“[; feates []g ,:>7
clutter, changes in viewpoint, changes in appearancepselisions of F#g Bask’;w P— — po inference

body parts, etc. O St B M (WY Lo
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The pictorial structures framework [1] has been widely &pin hu-
man pose estimationn. Yang and Ramanan [7] proposed a simpld-igure 2: Proposed pipeline for human pose estimation. rGareinput
efficient model that outperformed previous state of the ppreaches. image, a set of basic and mid-level part detections is obthifror each
However, in addition to the difficulties of modelling smatiage patches basic part detection, a contextual representation is built based @k mi
for the body joints (see Fig. 1), the performance of theirhuetis also level part detections, which is used for rescoring the farfbe original
compromised by the use of a tree-structured model. Althdtegs per- and rescored detections for all basic parts are then usedeirence on a
mit efficient and exact inference on graphical models, tstriced edge Pictorial structure (PS) model to obtain the final pose estém
structure is insufficient for capturing all the importankatens between

arts.
P the one in [4, 5], while reducing the size of the mid-levelresgntation

by an order of magnitude (40-50 poselets in our approach wse than
1000 in [4, 5]).
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Figure 1: (a) Detection score map for the right shoulder gisirclas-
sical sliding-window detection approach with a linear SVidithed on
HOG features. (b) Rescored version of (a) produced by ouegbhased
rescoring. The original map (a) has a strong score on thalashoul-
der location, but also in other regions. Our proposed rasgqroduces
more spatially-consistent score maps, showing a high resspoear the
correct location, and suppressing false positive locatitmaddition, our
rescoring method can hallucinate the location of a part,fea (d) even
if there is not a high-scoring region in the original map (c).

In this work, we propose a new method for obtaining robust ges Figure 3: Qualitative results for the UIUC Sports datasew(t) and LSP

tections in a pictorial structure formulation for human @a@stimation. .-t (row 2). Leftmost images show the results from [@]rightmost
Motivated by the fact that small local HOG templates modgllihe body images show OLII‘ results

joints (“basic parts” from now on) are sensitive to noise, imeoduce
information from a mid-level representation of the imageider to ob-
tain more reliable basic part detections (see Fig. 2). Mpeeifically, we [1] M. Andriluka, S. Roth, and B. Schiele. Pictorial struets revisited:
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Experimental evaluation is conducted on two benchmarksJGJl
Sports [6] and Leeds Sports [3]. In the experiments, posmatbn ac-
curacy improves when our proposed rescoring functionsrasieded in
the unary potential of a pictorial structure model, usingroid-level part
representation (see Fig. 3. In particular, among the diffemid-level
part representations in our comparative analysis, thewatio discovery
of poselets with covering attains the best results in botas#ds. In addi-
tion, we report a gain in the pose estimation performancepeoable to



