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Figure 1: The inputs (left) are images of a car taken from different view-
points. The outputs (right) are the segmentation of car parts.

We attempt to parse cars into wheels, lights, windows, license plates and
body, as illustrated in Figure 1. We formulate the problem as landmark
identification. We first select representative locations on the boundaries
of the parts to serve as landmarks. They are selected so that locating them
yields the silhouette of the parts, and hence enables us to do object part
segmentation (see Figure 2(a)). We use a mixture of graphical models to
deal with different viewpoints so that we can take into account how the
visibility and appearance of parts alter with viewpoint (see Figure 2(b)).
We then use a mixture of graphical models to deal with different view-
points so that we can take into account how the visibility and appearance
of parts alter with viewpoint.
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Figure 2: (a) The landmark annotations for cars of some viewpoints. (b)
The proposed mixture-of-trees model. The landmarks connected by the
solid lines of same colors belong to the same semantic parts. The black
dashed lines show the links between different parts.

A novel aspect of our graphical model is that we couple the land-
marks with the segmentation of the image to exploit the image contents
when modeling the pairwise relation between neighboring landmarks. In
the ideal case where part boundaries of the cars are all preserved by the
segmentation, we can assume that the landmarks lie near the boundaries
between different segments. Each landmark is then associated to the ap-
pearance of its two closest segments. This enables us to associate ap-
pearance information to the landmarks and to introduce pairwise coupling
terms which enforce that the appearance is similar within parts and dif-
ferent between parts. We call this segmentation appearance consistency
(SAC) between segments of neighboring landmarks. However, in prac-
tice, it is always impossible to capture all part boundaries using single
level segmentation. Instead we couple the landmarks to a hierarchical seg-
mentation of the image. We treat the level f the hierarchy for each part as
a hidden variable, which is chosen dynamically during inference/parsing.
By doing this, our model is able to automatically select the most suitable
segmentation level for each part while parsing the image.

The model for each viewpoint is represented by G = (V,E). The
nodes V correspond to landmark points. They are divided into subsets
V =

⋃N
p=1Vp, where N is the number of parts and Vp consists of land-

marks lying at the boundaries of semantic part p. The edge structures E
are manually designed (see Figure 2(b)). Each node has pixel position of
landmark li = (xi,yi). The set of all positions is denoted by L = {li}

|V |
i=1.

We denote by pi the indicator specifying which part landmark i belongs
to, and by h(p) the segmentation level of part p. Then the segment pair
of node i, si, can be seen as the function of h(pi), which we denote by si,h
for simplicity. Similar to the definitions of L, we have H = {h(pi)}N

i=1

and S(H) = {si,h}
|V |
i=1. The score function of the model for viewpoint v is

S(L,H,v | I) = φ(L,H,v | I)+ψ(L,H,v | I)+βv (1)

In the following we omit v for simplicity. The unary terms φ(L,H | I) is
expressed as:

φ(L,H | I) = ∑
i∈V

[
w f

i · f (li | I)+we
i e(h(pi), li | I)

]
(2)

w f
i · f (li | I) measures the appearance evidence for landmark i at location

li, where f (li | I) is the HOG feature vector. The term e(h(pi), li | I)
penalizes landmarks being far from edges. The binary term ψ(L,H | I)
is:

ψ(L,H | I) = ∑
(i, j)∈E

wd
i, j ·d(li, l j)+ ∑

(i, j)∈E
pi=p j

wA
i, j ·A(si,h,s j,h | I) (3)

d(li, l j) = (−|xi − x j − x̄i j|,−|yi − y j − ȳi j|) measures the deformation
cost for connected pairs of landmarks, where x̄i j and ȳi j are the anchor
(mean) displacement of landmark i and j. We adopt L1 norm to en-
hance our model’s robustness to deformation. In the second term of
Equation 3, A(si,h,s j,h | I) = (α(s1

i,h,s
1
j,h | I),α(s1

i,h,s
2
j,h | I),α(s2

i,h,s
1
j,h |

I),α(s2
i,h,s

2
j,h | I)) is a vector storing the pairwise similarity between seg-

ments of nodes i and j. This, together with the strength term wA
i j, models

the SAC. Finally, β is a mixture-specific scalar bias. The parameters of
the score function are W = {w f

i }∪{w
e
i }∪{wd

i j}∪{wA
i j}∪{β}.

We validate our approach on a subset of PASCAL VOC2010 car im-
ages (VOC10) [1] and 3D car (CAR3D) [2]. The comparison with [3] are
shown in Figure 3.
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(a) PASCAL VOC 2010
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(b) CAR3D

Figure 3: Cumulative segmentation error distribution for parts. X-axis is
the average segmentation error normalized by image width, and Y-axis is
the fraction of the number of testing images. The red solid lines are the
performance using SAC and the blue dashed lines are from [3].
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