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Real world visual data, while typically being very high-dimensional, of-
ten lie on a low-dimensional subspace. Low-rank is an attribute capturing
the intrinsic low-dimensional structure of the data, when they are repre-
sented as column vectors of a matrix. Therefore, a natural approach in
low-dimensional subspace recovery is to minimise the rank of the target
matrix, subject to a constraint on the error in fitting the data.

By adopting the least squares error metric in fitting (i.e., assuming
that the errors follow Gaussian distribution with small variance), the so-
lution of the above mentioned rank minimisation problem is the classical
Principal Component Analysis (PCA) [3]. However, visual data obeying
postulated low-rank models may also contain gross errors and outliers to
which the least squares metric is known to be sensitive.

To overcome the aforementioned drawbacks of the PCA, robust to
gross but sparsely supported errors/outliers variants of the PCA have been
proposed. With X € RF*N representing the data matrix, such methods
aim to solve the following rank minimisation problem

%nglrank(A)-i-?LHEHo st. X=A+E, (1)

where A € RF*N s low-rank, E € RF*Y is sparsely supported and ac-
counts for gross errors/outliers and A > 0 is a regularisation parameter.
Due to the discrete nature of the rank and the ¢ quasi-norm, problem
(1) is NP-hard and thus intractable. To overcome this, a convex relax-
ation is typically adopted, by surrogating the ¢y quasi-norm of the fitting
error matrix and the rank of the target matrix with their closest convex ap-
proximants, namely the ¢;-norm and the nuclear norm respectively. For
instance, the RPCA [2] minimises ||Al|, + 2 ||E||, subject to X = A +E.
The IRPCA [1] rewrites A = PX and minimises ||P||, + A ||E||; subject
to X = PX +E. The active subspace RPCA [4] factorises A = UV with
U”U = I and minimises || V||, + 2 ||E||; subject to X = UV +E.
Although the aforementioned nuclear/¢; norm-based methods mainly
involve convex problems with global solutions, the relaxation may make
the solutions seriously deviate from the original ones. Consequently, a
better approximation to the original ¢y quasi-norm-regularised rank min-
imisation problem (1) is necessary. In this paper, the Generalised Scalable
Robust PCA (GSRPCA) is proposed, by reformulating the robust PCA
problem using the Schatten p-norm ||-|| s, and the £;-norm [[[l, subject

to orthonormality constraints. Let U € RF*¥ be column-orthogonal, such
that k < F and UTU =1, and rewrite A = UV. GSRPCA is formulated as
the following non-convex optimisation problem

X=UV+E
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The column vectors of U can be interpreted as the principal compo-
nents (base vectors) spanning the principal subspace and V as the pro-
jection of X onto the principal subspace. The state-of-the-art robust vari-
ants of the PCA in [1, 2, 4] are all special cases of the GSRPCA when
p = q =1 and by properly choosing the number k of principal compo-
nents. The advantage of (2) is that, for p — 0 and ¢ — 0, a closer approx-
imation to the original rank minimisation problem in (1) can be achieved,
by allowing the optimisation function to become non-convex, while re-
taining the scalability benefit introduced with the factorisation of A.

An efficient alternating directions algorithm for GSRPCA is devel-
oped (Algorithm 1), based on the method of augmented Lagrange multi-
pliers. The computational cost per iteration is dominated by 2 SVDs of
size k x N and F x k. Since for most applications typically k < min (F,N),
the 2 SVDs can be computed in O (kN2 +k3) and O (kF? +k*) respec-
tively. In contrast, the RPCA [2] requires one SVD of size F x N, which
is O (NF?+N?) per iteration (assuming F > N) and the IRPCA [1] re-

Algorithm 1: Generalised Scalable Robust PCA

Input: Data matrix X, number of components k, parameters p,q

Initialise: U = [k first singular vectors of X[, E=Y =0, u = 4&\“

1
1 while not converged do

2 Compute the SVD: U’ (X —E+ u_lY) = USDng.
3 Update: V < USS;j_, {Ds} VE.
4 Update: E¢ S  {X-UV+u~'Y}.
Compute the SVD: (X —E+pu~'Y) VI = UsDgVE.
Update: U « UgVE.
Update: Y <+~ Y+ u (X-UV—E).
Update: u < min (U&, tnax)-
Check convergence: | X—UV —E| < e€|X].
10 end while
Output: Principal components U, projections V, sparse errors E
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Figure 1: Denoising on the Extended Yale B database. 15! row: shadow
removal; 2™ row: 10% salt & pepper noise; 3" row: 30% salt & pepper
noise; 4™ row: random patch of maximum size 40 x 40. 1% column: orig-
inal image; 20d column: PCA; 3™ column: RPCA; 4 column: IRPCA;
517t columns: GSRPCA with p = ¢ € {1, 0.5, 0.1}.

quires one SVD of size F x F, which is O (F 3) per iteration. There-
fore, as long as k remains low, GSRPCA scales well to problems where F
and/or N become large, contrary to RPCA and IRPCA.

The performance of the GSRPCA is assessed by conducting experi-
ments on both synthetic and real data (see for instance Fig. 1). The ex-
perimental results indicate that the GSRPCA outperforms the robust PCA
methods [1, 2, 4] to which it is compared, without introducing much extra
computational cost.
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