Fine-Grained Sketch-Based Image Retrieval by Matching Deformable Part Models
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Figure 1: Comparison of traditional text-based image retrieval, conven- gos g o
tional SBIR, and the proposed fine-grained SBIR framework. 8 os g o6
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Introduction Sketches are known to be able to capture object appearance 02:’7":':- ———A o
and structure more intuitively and precisely than bare texts. However, to o -
date the main focus of sketch-based image retrieval (SBIR) has been on
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retrieving photos of the same category, overlooking an important property
of sketches — they can capture fine-grained variations of objects such as
pose (standing vs. sitting) and iconic pattern (textures on a cow’s body).
By further leveraging this descriptive power of sketches, in this paper,
for the first time we introduce fine-grained SBIR. That is to study how
sketches can be used to differentiate fine-grained variations of objects for
retrieval, specifically pose variations. Figure 1 contrasts text-based image
retrieval and conventional SBIR with our proposed fine-grained SBIR.
Methodology Key to this problem is introducing a mid-level sketch repre-
sentation that not only captures object pose, but also possesses the ability
to traverse sketch and photo domains. Specifically, we learn deformable
part-based model (DPM) [3] to discover and encode the various poses
and parts in sketch and image domains independently, and employ graph
matching [1] to establishing the correspondence between DPMs from dif-
ferent domains. The DPM is a two-layer structure, composed of root filter
and part filters. We denote DPM as M = (r,G), where r = (w, h, f) spec-
ifies the width w, height 4 and global appearance feature of the root filter;
and G = (V,E,A) represents the star graph composed of the part filters.
For the star graph G, V represents a set of nodes, E, edges, and A, at-
tributes. Our matching objective for DPM accounts for both appearance
and geometric information encoded in DPM, as well as both layers of rep-
resentation, i.e., root filter r and part filter star graph G. Given two DPMs
MR and MT | the similarity function is defined as:

SMR|MT) = 1% Syoor(MF[MT) + (1= 9) * Spare (MR IMT) (1)
where Sy, is the oot similarity and Sy, is the part similarity; y is a
weighting factor balancing root and part similarities. The root filter simi-
larity is generated considering appearance features, sizes and aspect ratios
of the root filters, while the part similarity is solved as a graph match-
ing problem on the part filter star graphs. The desired input of our pro-
posed method is a sketch probe S with known category, and the output is
a sequence of images from the same category ordered by their similari-
ties with the probe S in terms of pose/appearance details. Achieving this
fine-grained SBIR requires two major steps: (i) Training: DPM training
and component alignment; (ii) Retrieval: fine-grained retrieval based on
matching a probe sketch DPM detection with image DPM detections.
Experiment We propose an SBIR dataset by intersecting 14 common cat-
egories from the 20,000 sketch dataset [4] and PASCAL VOC dataset [2].
We divide the whole dataset into testing and training sets of the equal
size. To enable quantitative evaluation, we manually annotate a subset of

Figure 2: Precision-recall curves comparing bag-of-words (BOW), spatial
pyramid (SP), and our method (Ours), using criterion: viewpoint, config-

uration, body feature, zoom separately.
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Figure 3: Example retrievals of our method (Ours), spatial pyramid (SP)
and bag-of-words (BOW). Ground truth similarity is also illustrated with
the decomposition of viewpoint (V), configuration (C), body feature (B)
and zoom (Z).

the testing set with exhaustive pairwise similarity ground-truth. For each
sketch-image pair, we score their similarity in terms of four independent
criteria: (i) viewpoint (V),(ii) zoom (Z),(iii) configuration (C), (iv) body
feature (B). For each criterion, we annotate three levels of similarity: 0
for not similar, 1 for similar and 2 for very similar. The results in Figure 3
include some example annotations. We compare our method with con-
ventional bag-of-words and spatial pyramid methods, both quantitative
results (Figure 2) and qualitative results (Figure 3) have demonstrated our
superior performance.
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