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Domain adaptation (DA) is the process in which labeled training samples
available from one domain is used to improve the performance of sta-
tistical tasks performed on test samples drawn from a different domain.
The domain from which the training samples are obtained is termed as
the source domain, and the counterpart consisting of the test samples is
termed as the target domain. Few unlabeled training samples are also
taken from the target domain in order to approximate its distribution.

In this paper, we propose a new method of unsupervised DA, where
a set of domain invariant sub-spaces are estimated using the geometrical
and statistical properties of the source and target domains. This is a mod-
ification of the work done by Gopalan et al. [2], where the geodesic path
from the principal components of the source to that of the target is consid-
ered in the Grassmann manifold, and the intermediary points are sampled
to represent the incremental change in the geometric properties of the data
in source and target domains. Instead of the geodesic path, we consider
an alternate path of shortest length between the principal components of
source and target, with the property that the intermediary sample points
on the path form domain invariant sub-spaces using the concept of Max-
imum Mean Discrepancy (MMD) [3]. Thus we model the change in the
geometric properties of data in both the domains sequentially, in a manner
such that the distributions of projected data from both the domains always
remain similar along the path. The entire formulation is done in the kernel
space which makes it more robust to non-linear transformations.

Let X and Y be the source and target domains having nX and nY num-
ber of instances respectively. If Φ(.) is a universal kernel function, then
in kernel space the source and target domains are Φ(X) ∈ RnX×d and
Φ(Y ) ∈ RnX×d respectively. Let KXX and KYY be the kernel gram matri-
ces of Φ(X) and Φ(Y ) respectively. Let D = [X ;Y ] denote the combined
source and target domain data, and the corresponding data in kernel space
is given as Φ(D). The kernel gram matrix formed using D is given by

K =

[
KXX KXY
KT

XY KYY

]
, where KXY = Φ(X)Φ(Y )T .

Let Φ(X̃) and Φ(Ỹ ) represent the projections of Φ(X) and Φ(Y ) re-
spectively onto a subspace Wi ∈Rd×p, which is a point on the Grassmann
manifold Gd,p. Here, d is the dimension of both source and target do-
mains in RKHS and p is the dimension of the optimal sub-spaces. Then,
the square of the distance between the means of two domains is given as:

δ
2
µ = tr

(
W T

i Φ(D)T
[

I1 −I2
−I2 I3

]
Φ(D)Wi

)
= tr

(
ZT

i ΓZi

)
(1)

where, Wi = Φ(D)T Zi, Zi ∈ R(nX+nY )×p, Γ =

(
K
[

I1 −I2
−I2 I3

]
K
)

and

[I1]nX×nX , [I2]nY×nX and [I3]nY×nY are matrices containing all elements as
1/n2

X , 1/nX nY and 1/n2
Y respectively and Zi is the unknown variable to be

estimated.
If UΦ

X and UΦ
Y are the principal components of Φ(X) and Φ(Y ) re-

spectively, it can be proved that the principal components of Φ(X) and
Φ(Y )UΦ

Y UΦ
X

T are the same. Hence, the starting point of the path PW is
the principal components of Φ(Ds) = [Φ(X);Φ(Y )UΦ

Y UΦ
X

T
] and the end

point of PW can be obtained by the principal components of Φ(Dt) =

[Φ(X)UΦ
X UΦ

Y
T ;Φ(Y )]. Let, UΦ

s and UΦ
t be the principal components of

Φ(Ds) and Φ(Dt) respectively. Also, V Φ
X and V Φ

Y be the eigen-vectors of
KXX and KYY respectively. Similarly, let V Φ

s and V Φ
t be the eigen-vectors

of Ks and Kt respectively, where Ks and Kt are the kernel gram matrices
built on Φ(Ds) and Φ(Dt) respectively.

Let, Gi denote the ith sampled point on the geodesic path PG and the
ith sample point on PW represent the sub-space Wi. The start and the end
points of PW are given by W1 = V Φ

s and WN ′ = V Φ
t respectively, while

the intermediate points are denoted by Wi, i = 1, . . .N′− 1. Now, PW is

the path of shortest length if the sampled points from PW is closest to the
corresponding sampled points from PG, i.e. dpro j(Gi,Wi) is minimum,
∀i = 2, . . . ,(N′−1). The square of the distance between two sub-spaces,
PG

i and PW
i in the kernel space, ia given as:

δ
2
pro j(Wi,Gi) = p− tr(ZT

i K̂iV Φ
i V Φ

i
T

K̂T
i Zi) = p− tr(ZT

i ΠiZi) (2)

where, Πi = K̂iV Φ
i V Φ

i
T K̂T

i . Φ(D̂i) is an appropriate projection of Φ(D).
V Φ

i is the ith intermediary point sampled on the geodesic path from V Φ
s to

V Φ
t and K̂i is the kernel gram matrix (for ith sub-space in the sequence)

given as KV Φ
i V Φ

s
T K.

For an optimal value of Zi, δ 2
mu and δ 2

pro j(Gi,Wi) given in Eqns. 1
and 2 should be minimum. The optimization framework to estimate Zi is:

maximize
Zi

tr(ZT
i ΠiΓ

−1Zi) (3)

subject to ZT
i Zi = I (4)

After obtaining the set of optimal Zis, the projections of the data onto
Wis are given as Φ(D)Wi = KZi, ∀i = 2, . . . ,(N′−1). The projection of
the data points onto the first and last (or initial and final) points of the path
PW i.e. on UΦ

s and UΦ
t are:

Φ(D)UΦ
s = Φ(D)Φ(Ds)

TV Φ
s =

[
KXX KXXV Φ

X V Φ
Y

T KYY

KT
XY KT

XYV Φ
X V Φ

Y
T KYY

]
V Φ

s (5)

Φ(D)UΦ
t = Φ(D)Φ(Dt)

TV Φ
t =

[
KXYV Φ

Y V Φ
X

T KXX KXY

KYYV Φ
Y V Φ

X
T KXX KYY

]
V Φ

t (6)

After obtaining the optimal sub-spaces, the projections of the source and
target domains onto the intermediary sub-spaces are obtained and con-
catenated together, as done in [2], for training the KNN classifier.

We evaluate the performance of the proposed method of DA for im-
proving the results of object categorization using Office + Caltech datasets
[1]. The dataset contains four domains: Amazon (A), Caltech (C), Dslr
(D) and Webcam (W), with 10 classes of objects in each of the domains.
Table 1 shows the classification accuracies for 12 different pairs of source
and target domains, using a 25-fold cross validation.

Table 1: Classification accuracies (in %-age) on Office+Caltech dataset
[1], using different techniques of unsupervised domain adaptation.

Method C→A D→A W→A A→C D→C W→C
GFS [2] 36.9 32 27.5 35.3 29.4 21.7
GFK [1] 36.9 32.5 31.1 35.6 29.8 27.2
Proposed 42.63 44.16 44.65 34.40 41.56 43.26
Method A→D C→D W→D A→W C→W D→W
GFS [2] 30.7 32.6 54.3 31.0 30.6 66.0
GFK [1] 35.2 35.2 70.6 34.4 33.7 74.9
Proposed 38.82 43.64 80.57 39.31 42.27 78.03

The proposed method of unsupervised domain adaptation handles
non-linear transformation of data as well as estimates intermediate do-
main invariant sub-spaces, making it more efficient.
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