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We propose a new methodology for producing temporal alignment of
facial behaviour, and apply it to the analysis of the facial action units
(AU) temporal segments. Therefore, our contributions are twofold. In
first place, we propose a new methodology for temporal alignment of two
sequences of facial behaviour. Secondly, we propose a new way of seg-
menting the AU temporal segments that relies on the temporal alignment
of an exemplar sequence (a template) with the test sequence.
Alignment methodology The temporal alignemnt strategy builds on the
work of [4]. In this work, the authors managed to project a sequence into
a parametric curve embedded into a lower-dimensional space by applying
Laplacian eigenmaps. Furthermore, they were able to backproject from
this curve into frame space by means of a simple linear transformation.
Formally, if X = {xt}t=1:n is the original sequence, then this technique
allows the construction of a continuous parametric approximation of the
original sequence as:

X (t) = A(X)Y(t)+ x̄ (1)

where Y(t) is the curve embedded in the lower dimensional space, and
A(X) is a matrix that depends on the original sequence. Crucially, Y(t)
has an analytical form and can be derived analytically.

We then consider a family of parametric functions that represent the
possible temporal transformations. For example, we can use a linear warp
to account for constant differences on the speeds of actions, or a piecewise
linear function. W (−;θ) represents such transformation parametrised by
θ . If aligning the test function onto a template sequence, we define the
loss function of the alignment between the template and the test sequence
as:
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θ

n
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Applying the chain rule and the fact that Y can be analytically differ-
entiated, then we can compute:
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It is then possible to minimise the loss function using a Gauss-Newton
approach as:
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where J
θ (it) is the Jacobian of X respect to the warp parameters θ .

Application to AU temporal segment detection: The AU temporal seg-
ments are defined as neutral (no activation), onset (increase of intensity
of the AU), apex (maintain) and offset (decay of intensity of the AU). The
task is to label each frame of a sequence accordingly. This is typically
done by training per-frame classifiers. However, we propose instead to
align the test sequence with an exemplar sequence with known labels (a
template). The template labels are then mapped through the alignment
function to produce the test sequence labelling.

We define two different warp functions. The first one aligns a full ac-
tivation episode to the test sequence by using a piecewise linear warping.
This model adapts to linear differences in speed independently for each
AU segment. This model is illustrated in Fig. 1. Specifically, the warp
function is defined as:
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However, this model does not account for different AU intensities.
Smiles can be low intensity (closed mouth and low intensity of the mouth
corner pulling) or broad smiles (with open stretched mouth). The second
model accounts for this differences. In particular, the action exemplar
and the test sequence do not need to be aligned in full. Therefore, the
template should reach maximum intensity. This model is illustrated on
the right hand side part of in Fig. 1.
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Figure 1: Depiction of the temporal alignment strategy for both of the
models presented here (left: model1, right: model2).

The performance achieved by model 2 is the best. However, both
models provide superior performance to other state of the art methods, as
shown in Table 1.

Table 1: Comparison of AU temporal segment detection methods on the MMI
database. F1act is the F1-measure after converting into AU activation.

Systems Neutral Onset Apex Offset F1act
Model1 83.42 54.15 78.86 57.87 77.83
Model2 85.88 56.32 79.75 58.95 80.62

Jiang et al. 2013[1] 78.50 53.38 72.12 48.73 67.53
Valstar et al. 2012[3] 76.60 56.75 69.38 48.87 -

Koelstra et al. 2010[2] - - - - 62.5
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