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We propose Regularized Max Pooling (RMP) for image classifica-

tion. RMP classifies an image (or image region) by extracting feature

vectors at multiple subwindows at multiple locations and scales. Un-

like Spatial Pyramid Matching where the subwindows are defined purely

based on geometric correspondence, RMP accounts for the deformation

of discriminative parts. The amount of deformation and the discriminative

ability for multiple parts are jointly learned during training.

An RMP model is a collection filters. Each filter is anchored to a spe-

cific image subwindow and associated with a set of deformation coeffi-

cients. The anchoring subwindows are predetermined at various locations

and scales, while the filters and deformation coefficients are learnable pa-

rameters of the model. Fig. 1 shows a possible way to define subwindows.

To classify a test image, RMP extracts feature vectors for all anchoring

subwindows. The classification score of an image is the weighted sum

of all filter responses. Each filter yields a set of filter responses, one for

each level of deformation. The deformation coefficients are the weights

for these filter responses.

Given a set of images {Ii}
n
i=1 and labels {yi|yi ∈ {1,−1}}n

i=1 , con-

sider a particular set of geometrically defined subwindows which can en-

code semantic content of an image at different locations and scales (e.g.,

Fig 1). Let {I j}m
j=1 denote the set of subwindows for image I. Let φ be

the feature function of which the input is an image region and the output is

a column vector. Let D j be the feature matrix computed at location j for

all images and K j the corresponding kernel, i.e., D j = [φ(I
j
1) · · ·φ(I

j
n)]

and K j = (D j)T D j . The joint kernel for all subwindows is the sum of

all kernels: K = ∑m
j=1 K j; this corresponds to concatenating all feature

vectors computed at all subwindows. Given the kernel K, we train an

Least-Squares SVM and obtain a coefficient vector and bias term α ,b.

The filter for subwindow j can be computed as w j = D jα .

For a particular subwindow j and an image I, the regularized maxi-

mum score is defined:

f j(γ) = max
k∈{1,··· ,m}

{

(w j)T φ(Ik)− γ .dist(Ik,I j)
}

. (1)

Here γ is a non-negative regularization parameter and dist(·, ·) is the square

geometric distance between two regions. The square geometric distance

from a region R′ to a reference region R is defined as:
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where (x,y,w,h) and (x′,y′,w′,h′) are the center locations, the widths,

and the heights of regions R and R′ respectively. This distance function is

asymmetric. It is invariant to the scale of the coordinate system. The last

two terms of Eq. (2) measure the scale distance between R′ and R. We

use log2(·) to ensure that the scale distance from R′ to R is the same for

the following two cases: (i) R′ is k times bigger than R; (ii) R′ is k times

smaller than R.

The value of f j(γ) is the regularized maximum response; it seeks a

location with high filter response and low deformation cost w.r.t. to the

anchor region I j. If γ is 0, f j(γ) is the maximum filter response. If γ
is big, γ .dist(Ik,I j) will be big except for k = j where dist(I j,I j) = 0.

Thus, for a big γ , f j(γ) = (w j)T φ(I j), which is the filter response of the

anchor region.

The right setting for γ depends on the level of deformation of region

j of the semantic class in consideration. Since the deformation level of

a region is unknown, we start with an over-complete set of γ’s and learn

the tradeoff between deformation and discrimination. For each region

j of an image I, we construct a feature vector by varying the value of

γ ∈ {γ1, · · · ,γk} and compute the regularized maximum response. Let f j

be the vector of obtained values, i.e., f j = [ f j(γ1), · · · , f j(γk)]
T . For each

image, we obtain a feature matrix by accumulating the filter responses for

all regions F = [f1 · · · fm]. Let Fi be the feature matrix for image Ii. We

jointly learn the deformation and discriminative ability of all regions by

Figure 1: From grid division to subwindows. An image is divided into

4×4 blocks. We consider rectangular subwindows that can be formed by

a contiguous chunk of blocks. There are 100 such subwindows, and this

figure shows four examples.

solving the following optimization problem:

minimize
S,b

n

∑
i=1

(trace(ST Fi)+b−yi)
2 (3)

s.t. sl j ≥ 0 ∀l = 1, · · · ,k, ∀ j = 1, · · · ,m. (4)

The above optimizes over a weight matrix S ∈ ℜk×m and a bias term

b. Each column of S is a weight vector for a particular region; it learns

weights for the regularized maximum responses for different values of

γ’s. The weights should be non-negative to emphasize the relative impor-

tance of higher filter responses. The objective of the above formulation

minimizes the sum of L2 losses.

We start with an over-complete set of γ’s and let the algorithm deter-

mines the right level of allowable deformation. In our experiments, we

use γ1 = 0, γk = ∞, γl = 2l/104 for l = 2, · · · ,k − 1, with k = 15. The

feasible set of S is suitable for different levels of deformation, including

the following two extreme cases:

1. Well-aligned semantic concept. For an image categorization task

where the semantic concepts are well aligned, rigid geometric align-

ment is the right model. In this case, the weight matrix S could be

all zeros except for the last row of all ones (the last row corresponds

to γ = ∞).

2. Highly deformed semantic concept. For categorization tasks where

the semantic concepts have high level of deformation, geometric

correspondence should be ignored. In this case, the weight matrix

S could be all zeros except for the first row of all ones (the first row

corresponds to γ = 0).

This formulation corresponds to a linear program, which can be opti-

mized efficiently using a linear programming solver such as Cplex.

We demonstrate the benefits of RMP in recognizing human actions

in still images. RMP outperforms Deformable Part Models and Spatial

Pyramid Matching, especially for action classes with high level of defor-

mation. Furthermore, the simplicity and flexibility of RMP allow it to be

used with any type of features, including Convolutional Neural Network

(CNN) features. Together with CNN features, RMP establishes the new

state-of-the-art performance for human action recognition in still images,

evaluated on the challenging dataset of PASCAL VOC 2012.


