
Bird Species Categorization Using Pose Normalized Deep Convolutional Nets

Steve Branson1

sbranson@caltech.edu

Grant Van Horn2

gvanhorn@ucsd.edu

Serge Belongie3

tech.cornell.edu

Pietro Perona1

vision.caltech.edu

1 California Institute of Technology Pasadena, CA, USA
2 University of California, San Diego
La Jolla, CA, USA

3 Cornell Tech
New York, NY, USA

In this work we propose an architecture for fine-grained visual cat-
egorization that approaches expert human performance in the classifica-
tion of bird species. We perform a detailed investigation of state-of-the-art
deep convolutional feature implementations and fine-tuning feature learn-
ing for fine-grained classification. We observe that a model that integrates
lower-level feature layers with pose-normalized extraction routines and
higher-level feature layers with unaligned image features works best. Our
experiments advance state-of-the-art performance on bird species recog-
nition, with a large improvement of correct classification rates over previ-
ous methods (75% vs. 55-65%).

Our architecture can be organized into 4 components: keypoint detec-
tion, region alignment, feature extraction, and classification. We predict
2D locations and visibility of 13 semantic part keypoints of the birds using
the DPM implementation from [1] . These keypoints are then used to warp
the bird to a normalized, prototype representation. To determine the pro-
totype representations, we propose a novel graph-based clustering algo-
rithm for learning a compact pose normalization space. Features, includ-
ing HOG, Fisher-encoded SIFT, and outputs of layers from a CNN [3],
are extracted (and in some cases combined) from the warped region. The
final feature vectors are then classified using an SVM.

Although we believe our methods will generalize to other fine-grained
datasets, we forgo experiments on other datasets in favor of performing
more extensive empirical studies and analysis of the most important fac-
tors to achieving good performance on CUB-200-2011. Specifically, we
analyze the effect of different types of features, alignment models, and
CNN learning methods. We believe that the results will be informative to
researchers who work on object recognition in general.

Our fully automatic approach achieves a classification accuracy of
75.7%, a 30% reduction in error from the highest performing (to our
knowledge) existing method [2]. We note that our method does not as-
sume ground truth object bounding boxes are provided at test time (unlike
many/most methods). If we assume ground truth part locations are pro-
vided at test time, accuracy is boosted to 85.4%. These results were ob-
tained using prototype learning using a similarity warping function com-
puted using 5 keypoints per region, CNN fine-tuning, and concatenating
features from all layers of the CNN for each region. The major factors
that explain performance trends and improvements are:
1. Choice of features caused the most significant jumps in performance.

The earliest methods that used bag-of-words features achieved per-
formance in the 10− 30% range. Recently methods that employed
more modern features like POOF, Fisher-encoded SIFT and color de-
scriptors, and Kernel Descriptors (KDES) significantly boosted per-
formance into the 50−62% range. CNN features have helped yield a
second major jump in performance to 65−76%. See Figure 1.

2. Incorporating a stronger localization/alignment model is also impor-
tant. Among alignment models, a similarity transformation model
fairly significantly outperformed a simpler translation-based model.
Using more keypoints to estimate warpings and learning pose regions
yielded minor improvements in performance. See Figure 2.

3. When using CNN features, fine-tuning the weights of the network and
extracting features from mid-level layers yielded substantial improve-
ments in performance. See Figure 3.
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Figure 1: Feature Performance Comparison: CNN features signifi-
cantly outperform HOG and Fisher features for all levels of alignment
(image, bounding box, head).
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Figure 2: Effect of CNN Layers For Different Regions: The later fully
connected layers (fc6 & fc7) significantly outperform earlier layers when
a crude alignment model is used (image-level alignment), whereas con-
volutional layers (conv5) begin to dominate performance as we move to a
stronger alignment model (from image→ bbox→ body→ head).
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Figure 3: Effect of Fine-Tuning with GT Parts: Fine-tuning signifi-
cantly improves performance for all alignment levels (width of each tube).
Improvements occur for all CNN layers; however, the effect is largest for
fully connected layers.




