Simultaneous Mosaicing and Tracking with an Event Camera
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An event camera is a silicon retina which outputs not a sequence of
video frames like a standard camera, but a stream of asynchronous spikes,
each with pixel location, sign and precise timing, indicating when individ-
ual pixels record a threshold log intensity change (positive or negative).
By encoding only image change, it offers the potential to transmit the in-
formation in a standard video but at vastly reduced bitrate, and with huge
added advantages of very high dynamic range and temporal resolution.

In this paper, we show for the first time that an event stream from an
event camera (e.g. Figure 1(b)), with no additional sensing, can be used to
track accurate camera rotation while building a persistent and high quality
mosaic of a scene (e.g. Figure 1(d)) which is super-resolution accurate
and has high dynamic range; we use the first commercial event camera [1]
(Figure 1(a)). Our method involves parallel camera rotation tracking and
template reconstruction from estimated gradients (e.g. Figure 1(c)), both
operating on an event-by-event basis and based on probabilistic filtering.
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Figure 1: Proposed algorithm: (a) scene and DVS camera; (b) event
stream; (c) estimated gradient map; (d) reconstructed intensity map.

In our particle filter based tracking, the posterior density function at
time ¢ is represented by N particles, each of which is a set consisting of a
hypothesis of the current state Rl@ € SO(3) and a normalised weight wl(t)
As a new event is received, all particles are perturbed based on a constant
position motion model; we perturb the current so(3) vector on the tangent
plane with Gaussian noise independently in all three axes and reproject
it onto the SO(3) unit sphere to obtain the corresponding predicted rota-
tion. The noise is the predicted change the current rotation might have
undergone since the previous event was generated. The weights of these
perturbed particles are then updated through the measurement update step
which applies Bayes rule to each particle and normalised subsequently. A
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measurement given an event, the current state R

R(t—rc)

; , where 7. is the time elapsed since the previous event at a specific
pixel, is a log intensity difference between the corresponding intensity
map positions which is to be used to calculate the likelihood for each par-
ticle, essentially asking ‘how likely was this event relative to our mosaic
given a particular hypothesis of camera pose?’. For the next measurement
update and the reconstruction step, a particle mean pose is saved for each
pixel.

We now turn to incrementally improving an estimate of the intensity
mosaic. This takes two steps; pixel-wise incremental Extended Kalman
Filter (EKF) estimation of the log gradient at each template pixel, and in-
terleaved Poisson reconstruction to recover absolute log intensity. Each
pixel of the gradient map has an independent gradient estimate and co-
variance matrix. Now, we want to improve a gradient estimate based on a
new incoming event and a tracking result using the pixel-wise EKF. As-
suming, based on the rapidity of events, that the gradient g in the template
and the camera velocity v can be considered locally constant, we now
say (g-v)7. is the amount of log grey level change that has happened
since the last event. Therefore, if we have an event camera where log

and the previous state

intensity change C should trigger an event, the brightness constancy tells

us (g(t) ~v(’)) T, = +C which leads to define a measurement z(") = TL

and its measurement model A() = M. The gradient estimate and the
uncertainty covariance matrix are then updated using the standard EKF
equations. Essentially, each new event which lines up with a particular
template pixel improves our gradient estimate in the direction parallel to
the camera motion over the scene at that pixel while we learn nothing
about the gradient in the direction perpendicular to the motion. Finally,
we reconstruct the log intensity of the image whose gradients across the
whole image domain are close to the estimated gradients in a least squares
sense inspired by [2].

We conducted the spherical mosaicing reconstruction in both indoor
and outdoor scenes as shown in Figure 2. Also, we show the potential for
reconstructing high resolution and dynamic range scenes from very small
camera motion as shown in Figure 3.

Figure 2: Spherical mosaicing for indoor and outdoor scenes. The over-
laid boxes represent the field of view of the event camera.
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Figure 3: (a) Comparison of a reconstructed high resolution image and a
down sampled normal camera image; (b) comparison of a reconstructed
high dynamic range image and a normal CCD camera image.

We believe these are breakthrough results, showing how joint sequen-
tial and global estimation permits the great benefits of an event camera to
be applied to a real problem of mosaicing, and hopefully opening the door
to similar approaches in dense 3D reconstruction and many other vision
problems.
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