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Dynamic scene understanding is an essential topic in computer vision.
It tries to combine information from tracking, 3D reconstruction, segmen-
tation, motion estimation to infer information about an ever changing 3D
environment. While structure from motion for measuring movements in
space is well understood on static scenes, the motion estimation of non-
static scenes, known as Scene Flow (SF), still pose a challenging problem.
This gets even harder if the moving objects are non-rigid. A popular way
to estimate SF is to use a calibrated and synchronized multi-view setup
and combine traditional Optical Flow (OF) estimation with simultaneous
3D reconstruction [1, 4]. With the recent range sensor developments, such
as the Microsoft Kinect or the Intel Gesture Camera, the SF estimation
solely from RGB-D data became a popular alternative [2, 3, 5].

In this paper we show a novel method for accurate and robust SF es-
timation of non-rigid scenes from RGB-D data. This estimation is solved
in an dense variational energy minimization framework

min
u

GI(I1, I2,u)+GD(D1,D2,u)+R(u) (1)

based on a multi-scale Ternary Census Transform (TCT) for the intensity
data term GI in combination with a depth data term GD based on the
patch-wise Closest Point (CP) distance, as shown in Figure 1. The motion
in our estimation is modeled as direct projection and image warping W in
3D.

In particular, we propose an intensity data term GI to estimate the
scene correspondences given by the TCT on a local neighborhood N :

GI(x,u) =
1

|N |−1

|N |−1

∑
i=1

1− [Ci(I2,W (x,u)) =Ci(I1,x)] , (2)

Where C is the ternary census signature of each patch. This TCT term cal-
culates the intensity difference by an encoding of the illumination invari-
ant local structure. The similarity is calculated by the Hamming distance
between the signature patches. The a depth data term GD is calculated as
the patch-wise distance to the CP in 3D, which makes it more robust in
low structured regions and in case of acquisition noise:

GD(x,u) =
1
|N | ∑

y∈N (x)
‖X2(y)−u(y)−X1(y∗)‖2. (3)

Compared to traditional pointwise constancy terms our method is invari-
ant to most illumination changes, more robust to acquisition noise and
delivers better guidance in regions with low structure or low texture. The
SF constraints are combined with a higher order regularization term R,
namely Total Generalized Variation (TGV). The regularizer is weighted
and directed by an anisotropic diffusion tensor based on the input data.
Because both the intensity as well as the depth data are highly non-convex
a simple linearization as in traditional methods is not longer sufficient. We
therefore perform a direct second-order Taylor expansion of the pointwise
data terms, similar to [6]. The proposed whole variational energy model is
efficiently solved based on the primal-dual formulation and is efficiently
parallelized to run at high frame rates.

In an extensive evaluation we show the different properties and con-
tributions of the different terms in our model. The applicability of our
method to different kinds of camera modalities is shown in Figure 2. Be-
yond that, we show that the accuracy of our method is superior compared
to current SF approaches based on the Middlebury Benchmark, as shown
in Table 1. Our method better handles scenes with low texture or low
structure and is robust to illumination changes. It can cope with smooth
flow transitions, which occur at rotations or non-rigid movements, while
sharp boundaries of the flow field are preserved.

Figure 1: The scene flow is estimated from two consecutive depth and in-
tensity acquisitions. The depth data term is calculated as patch-wise Clos-
est Point (CP) search and the intensity data term is calculated as Ternary
Census Transform (TCT). For regularization we propose an anisotropic
Total Generalized Variation (TGV). The flow is visualized as a color
coded X ,Y map (motion key in the bottom right). The Z component is
shown as arrows colored according to their magnitude.

(a) Middlebury (b) K4Wv2 (c) PMD Nano

Figure 2: CP-Census SF results on real image sequences. In the first col-
umn the results of the Middlebury Cones sequence, in the second column
the flow of a rotated box with the K4Wv2 and in the third column a hand
closing sequence (non-rigid movement) acquired with the PMD Nano are
shown.
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Cones Teddy Venus
EPE / RMSVz / AAE EPE / RMSVz / AAE EPE / RMSVz / AAE

Basha et al. [1](2 views) (st) 0.58 N/A 0.39 0.57 N/A 1.01 0.16 N/A 1.58
Huguet and Devernay [4] (st) 1.10 N/A 0.69 1.25 N/A 0.51 0.31 N/A 0.98

Hadfield and Bowden [2] 1.24 0.06 1.01 0.83 0.03 0.83 0.36 0.02 1.03
Quiroga et al. [5] 0.57 0.05 0.52 0.69 0.04 0.71 0.31 0.00 1.26
Hornáček et al. [3] 0.54 0.02 0.52 0.35 0.01 0.16 0.26 0.02 0.64

CP-Census 0.40 0.03 0.04 0.31 0.02 0.05 0.15 0.00 0.41

Table 1: Quantitative comparison of SF methods on the Middlebury
dataset. The error is measured by EPE/AAE in 2D, and RMS in Z di-
rection. The best result for each dataset is highlighted and the second best
is underlined. Methods that calculate SF from stereo are marked with (st).


