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Figure 1: (a) Applying a linear classifier w learned by LDA to source

data x is equivalent to (b) applying classifier W =S~ 1/2w to decorrelated

points S~1/2x. (c) However, target points u may still be correlated after
S—1/2y, hurting performance. (d) Our method uses target-specific covari-
ance to obtain properly decorrelated .

Abstract. The most successful 2D object detection methods require a
large number of images annotated with object bounding boxes to be col-
lected for training. We present an alternative approach that trains on vir-
tual data rendered from 3D models, avoiding the need for manual label-
ing. Growing demand for virtual reality applications is quickly bringing
about an abundance of available 3D models for a large variety of object
categories. While mainstream use of 3D models in vision has focused on
predicting the 3D pose of objects, we investigate the use of such freely
available 3D models for multicategory 2D object detection. To address
the issue of dataset bias that arises from training on virtual data and test-
ing on real images, we propose a simple and fast adaptation approach
based on decorrelated features.

Background. In recent years, use of the linear SVM with Histogram
of Gradients (HOG) as the features has emerged as the predominant ob-
ject detection paradigm. Yet, as observed by Hariharan et al. [3], train-
ing SVMs can be expensive, especially because it usually involves costly
rounds of hard negative mining. Furthermore, the training must be re-
peated for each object category, which makes it scale poorly with the
number of categories. Hariharan et al. proposed a much more efficient
alternative using Linear Discriminant Analysis (LDA). LDA is a well-
known linear classifier that models the training set of examples x with
labels y € {0,1} as being generated by p(x,y) = p(x|y)p(y). p(y) is
the prior on class labels and the class-conditional densities are normal
distributions p(x|y) = N(x; 1”,S), where the feature vector covariance S
is assumed to be the same for both positive and negative (background)
classes. In our case, the feature is represented by x = ¢(I,b). The result-
ing classifier is given by The innovation in [3] was to re-use S and Ly,
the background mean, for all categories, reducing the task of learning a
new category model to computing the average positive feature, ty. This
was accomplished by calculating S and g for the largest possible win-
dow and subsampling to estimate all other smaller window sizes. Also,
S was shown to have a sparse local structure, with correlation falling off
sharply beyond a few nearby image locations. LDA was shown in [3] to
have competitive performance to SVM, and can be implemented both as
an exemplar-based [4] or as deformable parts model (DPM) [1].

Approach. We observe that estimating global statistics S and Ly once and
re-using them for all tasks may work when training and testing in the same
domain, but in our case, the virtual training data is likely to have different
statistics from the target real data. Figure 2 illustrates the effect of cen-
tering and decorrelating a positive mean using global statistics from the
wrong domain. The effect is clear: important discriminative information
is removed while irrelevant structures are not.

Based on this observation, we propose an adaptive decorrelation ap-
proach to detection. Assume that we are given labeled training data {x,y}
in the source domain (e.g. virtual images rendered from 3D models),
and unlabeled examples u in the target domain (e.g. real images col-
lected in an office environment). Evaluating the scoring function f(x)
in the source domain is equivalent to first decorrelating the training fea-
tures § =S~ 1/2x, computing their positive and negative class means iy =
S*I/zul and iy = S*I/zuo and then projecting the decorrelated feature
onto the decorrelated difference between means, fy(x) = W!'%, where

W = (ti; — tp). This is illustrated in Figure 1(a-b). However, as we saw in
Figure 2, the assumption that the input is properly decorrelated does not
hold if the input comes from a target domain with a different covariance
structure. Figure 1(c) illustrates this case, showing that S~1/2u does not
have isotropic covariance. Therefore, w cannot be used directly.

We may be able to compute the co-
variance of the target domain on the un-
labeled target points u, but not the posi-
tive class mean. Therefore, we would like
to re-use the decorrelated mean difference
W, but adapt to the covariance of the tar-
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Let the estimated target covariance be
T. We first decorrelate the target input feature with its inverse square root,
and then apply W directly, as shown in Figure 1(d). The resulting scoring
function is f () = (T~Y/2)7S~1/2(puy — [,Lo))Tu. This corresponds to a
transformation of (T~1/2)7 (§~1/2) instead of the original whitening S~
being applied to the difference between means to compute w. Note that if
source and target domains are the same, then (T~1/2)7 (S71/2) equals to
S~ since S is positive definite.

In practice, either the source or the target component of the above
transformation may also work, or even statitstics from similar domains.
However, as shown by our experiments, dissimilar domain statistics can
significantly hurt performance. Furthermore, if either source or target
has only images of the positive category available, and cannot be used
to properly compute background statistics, the other domain can still be
used.

We also extend our approach to supervised adaptation when a few
labeled examples are available in the target domain. Following [2], a
simple adaptation method is used whereby the template learned on source
positives is combined with a template learned on target positives, using a
weighted linear combination. The key difference with our approach is that
the target template uses target-specific statistics. In [2], the author uses the
same background statistics as [3] which were estimated on 10,000 natural
images from the PASCAL VOC 2010 dataset. Based on our analysis,
even though these background statistics were estimated from a very large
amount of real image data, they will not work for all domains. Our results
confirms this claim.

We evaluate our technique by training on virtual labeled examples
and testing on real images from a benchmark domain adaptation dataset.
We compare two kinds of virtual data, one rendered with real-image tex-
tures and one without. The evaluation demonstrates that with our method,
performance of classifiers trained on virtual data is comparable to that of
classifiers trained on large-scale real image domains.
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